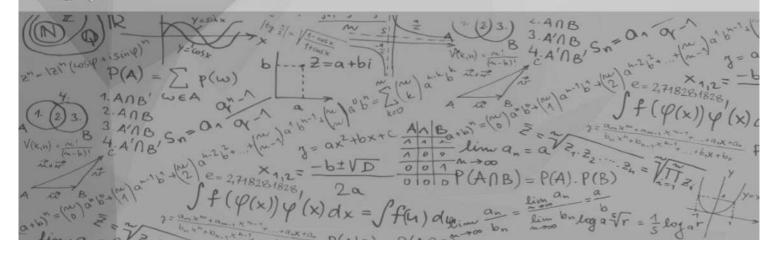


Cálculo Diferencial INTERM:

Exercícios · Apostilas · Resoluções · Vídeos Aulas ·

um kit de sobrevivência!



Aline E. de Medeiros Laerte Bemm Doherty Andrade Rodrigo Martins Rafaela Mayumi da S. Fuzioka Isadora Honório Guimarães - editora assistente

- editor assistente (DMA-UEM)

- editor assistente

- editor chefe (DMA-UEM)

- identidade visual

- identidade visual

Jornal Eletrônico de Ensino de Matemática - JEEPEMA Universidade Estadual de Maringá, Maringá-PR - Brasil. ISSN: 2594-6323

DOI: 10.4025/jeepema

Vol. 1 N° 2 / 96 páginas- Dezembro/2017

Palavras-chave: Integrais Impróprias, Teorema de Dini, Integral, Base, Logaritmo, Superfícies Parametrizadas, Cálculo Integral, Crescimento de Peixes.

Índice

Volume 1 - N° 2

- Integrais Impróprias: Albo Carlos Calhaeiro (DMA UEL).
- O Feorema de Dini: Doherty Andrade (FEITEP).
- Integral na Reta com Álgebra Linear um caso particular: Anderson da Silva Vieira (FATEC).
- Construção da Definição Geométrica de Logaritmos com o uso do Geogebra: Luciano Xavier de Azevedo e Luciene Parron Gimenes Arantes (DMA UEM).
- Superfícies Parametrizadas: Doherty Andrade (FEITEP) e Jorge Ferreira Lacerda (UEM).
- O Modelo de Crescimento de Peixes de Von Bertalanffy: Emerson Arnault de Toledo (DMA - UEM).

Integrais Impróprias

Albo Carlos Cavalheiro - Depto. de Matemática - UEL-Pr

RESUMO: Neste texto apresentamos as definições de integrais impróprias e alguns dos teoremas sobre convergência e divergência de integrais impróprias (critério da comparação, teste limite da comparação e o teste de Dirichlet), tema pouco abordado.

Palavras-chave: Integrais Impróprias. Critérios de Convergência.*

Sumário

1	Definições de integrais impróprias	1
2	Integrais Impróprias de Funções Não Negativas	9
3	Funções Absolutamente Integráveis	15
4	Mais alguns exemplos	19
5	A função Gama e a função Beta de Euler	24
6	Sugestão de Atividades	29

1. Definições de integrais impróprias

Uma condição necessária para que uma função $f:[a,b]\to\mathbb{R}$ seja integrável (segundo Riemann) é que f deve ser limitada. Observe que temos duas condições básicas: a função f é limitada e o domínio de integração [a,b] é compacto. Vamos estudar integrais de funções quando uma dessas hipóteses é omitida, ou seja, as integrais impróprias.

^{*} Publicado em 14-12-2017.

Definição 1.1 Dizemos que uma função f é localmente integrável em um intervalo I se f é integrável em qualquer intervalo $[a,b] \subset I$.

Exemplo 1.2 A função $f(x) = \operatorname{sen}(x)$ é localmente integrável em $(-\infty, \infty)$. A função $h(x) = \sqrt{x}$ é localmente integrável em $[0, \infty)$.

Definição 1.3 Seja f uma função localmente integrável em $[a, \infty)$. Definimos a integral imprópria

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

se o limite existir e for finito. Tal limite denomina-se integral imprópria de f estendida ao intervalo $[a,\infty)$. Neste caso, dizemos que a integral imprópria é convergente. Se $\lim_{t\to\infty}\int_a^t f(x)\,dx$ for ∞ , $-\infty$ ou não existir, dizemos que a integral imprópria é divergente.

Exemplo 1.4 A função $f(x) = \frac{1}{x^2}$ é localmente integrável em $[1, \infty)$. Temos,

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \left(-\frac{1}{x} \Big|_{1}^{t} \right)$$
$$= \lim_{t \to \infty} \left(-\frac{1}{t} + 1 \right) = 1,$$

ou seja, a integral imprópria $\int_1^\infty \frac{1}{x^2} dx$ é convergente.

Exemplo 1.5 A função $f(x) = e^x$ é localmente integrável em $[0, \infty)$. Temos,

$$\int_0^\infty e^x dx = \lim_{t \to \infty} \int_0^t e^x dx = \lim_{t \to \infty} \left(e^x \Big|_0^t \right)$$
$$= \lim_{t \to \infty} (e^t - 1) = \infty,$$

ou seja, a integral imprópria $\int_0^\infty e^x dx$ é divergente.

Exemplo 1.6 A função $f(x) = \cos(x)$ é localmente integrável em $[0, \infty)$. Temos que

$$\int_0^\infty \cos(x) \, dx = \lim_{t \to \infty} \int_0^t \cos(x) \, dx = \lim_{t \to \infty} \operatorname{sen}(t)$$

não existe, ou seja , a integral imprória $\int_0^\infty \cos(x)\,dx$ é divergente.

Definição 1.7 Seja f uma função localmente integrável em $(-\infty, a]$. Definimos

$$\int_{-\infty}^{a} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx.$$

Se o limite existir e for finito, dizemos que a integral imprópria é convergente. Caso contrário, a integral imprópria $\int_{-\infty}^{a} f(x) dx$ é divergente.

Definição 1.8 Seja f localmente integrável em \mathbb{R} . Definimos

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx$$

desde que ambas as integrais impróprias $\int_0^\infty f(x)\,dx$ e $\int_{-\infty}^0 f(x)\,dx$ sejam convergentes. Caso contrário, a integral imprópria $\int_{-\infty}^\infty f(x)\,dx$ é divergente.

Exemplo 1.9 A função $f(x) = e^x$ é localmente integrável em $(-\infty, 0]$. Temos

$$\int_{-\infty}^{0} e^{x} dx = \lim_{t \to -\infty} \int_{t}^{0} e^{x} dx = \lim_{t \to -\infty} \left(e^{x} \Big|_{t}^{0} \right)$$
$$= \lim_{t \to -\infty} (1 - e^{t}) = 1,$$

ou seja, a integral imprópria $\int_{-\infty}^{0} e^{x} dx$ é convergente.

Exemplo 1.10 Usando os exemplos 1.5 e 1.9, temos que a integral imprópria $\int_{-\infty}^{\infty} e^x dx$ é divergente.

Exemplo 1.11 A função $f(x) = \frac{1}{1+x^2}$ é localmente integrável em $(-\infty, \infty)$. Temos

$$\int_0^\infty \frac{1}{1+x^2} dx = \lim_{t \to \infty} \int_0^t \frac{1}{1+x^2} dx = \lim_{t \to \infty} \arctan(x) \Big|_0^t$$
$$= \lim_{t \to \infty} \arctan(t) = \frac{\pi}{2}.$$

De modo análogo, também obtemos que $\int_{-\infty}^{0} \frac{1}{1+x^2} dx = \frac{\pi}{2}$. Portanto,

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx + \int_{0}^{\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Exemplo 1.12 A função $f(x) = \frac{1}{x^p}$ é localmente integrável em $[1, \infty)$. Usando que

$$\int \frac{1}{x^p} dx = \frac{x^{1-p}}{1-p}, \text{ se } p \neq 1,$$

$$\int \frac{1}{x} dx = \ln(x), \text{ se } p = 1,$$

obtemos que

(i)
$$\int_1^\infty \frac{1}{x^p} dx = \frac{1}{p-1}$$
, se $p > 1$, ou seja, convergente;

(ii)
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \infty$$
, se $p \le 1$, ou seja, divergente.

Exemplo 1.13 Vamos determinar o valor de $\int_0^\infty e^{-x} x^n dx$, para $n \in \mathbb{N}$, usando indução e integração por partes.

(i) Temos para n = 1,

$$\int_{0}^{\infty} x e^{-x} dx = \lim_{t \to \infty} \int_{0}^{t} x e^{-x} dx$$

$$= \lim_{t \to \infty} \left(-x e^{-x} - e^{-x} \Big|_{0}^{t} \right)$$

$$= \lim_{t \to \infty} [(-t e^{-t} - e^{-t}) + 1]$$

$$= 1 = 1!.$$

(ii) Para n = 2, temos

$$\int_{0}^{\infty} x^{2} e^{-x} dx = \lim_{t \to \infty} \int_{0}^{t} x^{2} e^{-x} dx$$

$$= \lim_{t \to \infty} \left(x^{2} e^{-x} \Big|_{0}^{t} + 2 \int_{0}^{t} x e^{-x} dx \right)$$

$$= \lim_{t \to \infty} \left(t^{2} e^{-t} + 2 \int_{0}^{t} x e^{-x} dx \right)$$

$$= 2 \int_{0}^{\infty} x e^{-x} dx$$

$$= 2 = 2!.$$

(iii) De forma análoga obtemos $\int_0^\infty x^3 e^{-x} dx = 6 = 3!$.

(iv) Suponha que $\int_0^\infty x^n e^{-x} dx = n!$. Temos,

$$\int_{0}^{\infty} x^{n+1} e^{-x} dx = \lim_{t \to \infty} \int_{0}^{t} x^{n+1} e^{-x} dx$$

$$= \lim_{t \to \infty} \left(-x^{n+1} e^{-x} \Big|_{0}^{t} + (n+1) \int_{0}^{t} x^{n} e^{-x} dx \right)$$

$$= \lim_{t \to \infty} \left(-t^{n+1} e^{-t} + (n+1) \int_{0}^{t} x^{n} e^{-x} dx \right)$$

$$= (n+1) \int_{0}^{\infty} x^{n} e^{-x} dx$$

$$= (n+1)n!$$

$$= (n+1)!$$

Portanto, $\int_0^\infty x^n e^{-x} dx = n! \ (n \in \mathbb{N}).$

Teorema 1.14 Suponha que f_1 , ..., f_n sejam localmente integráveis em $[a, \infty)$ e que $\int_a^{\infty} f_j(x) dx$ sejam convergente, j = 1, 2, ..., n. Se c_1 , ..., c_n são constantes, então $\int_a^{\infty} (c_1 f_1 + ... + c_n f_n)(x) dx$ é convergente e

$$\int_{a}^{\infty} (c_1 f_1 + \dots + c_n f_n)(x) \, dx = c_1 \int_{a}^{\infty} f_1(x) \, dx + \dots + c_n \int_{a}^{\infty} f_n(x) \, dx.$$

Demonstração Se $a < t < \infty$ temos

$$\int_{a}^{t} (c_{1}f_{1} + \dots + c_{n}f_{n})(x) dx = c_{1} \int_{a}^{t} f_{1}(x) dx + \dots + c_{n} \int_{a}^{t} f_{n}(x) dx.$$

Logo, passando o limite quando $t \to \infty$, obtemos o resultado.

Definição 1.15 Seja f uma função não limitada em (a,b] e integrável em [t,b], para todo $t \in (a,b)$. Definimos a integral imprópria de f em (a,b] por

$$\int_a^b f(x) dx = \lim_{t \to a^+} \int_t^b f(x) dx.$$

Se o limite existir e for finito, dizemos que a integral imprópria $\int_a^b f(x) dx$ é convergente. Caso contrário, a integral imprópria $\int_a^b f(x) dx$ é divergente.

Exemplo 1.16 Considerando a função $f(x) = \frac{1}{\sqrt{x}}$, $x \in (0,1]$. Temos

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = \lim_{t \to 0^{+}} \int_{t}^{1} \frac{1}{\sqrt{x}} dx = \lim_{t \to 0^{+}} 2\sqrt{x} \Big|_{t}^{1}$$
$$= \lim_{t \to 0^{+}} (2 - 2\sqrt{t}) = 2,$$

ou seja, a integral imprópria $\int_0^1 \frac{1}{\sqrt{x}} dx$ é convergente.

Exemplo 1.17 Considere a função $f(x) = \ln(x)$, com $x \in (0,1]$. Temos,

$$\int_{0}^{1} \ln(x) dx = \lim_{t \to 0^{+}} \int_{t}^{1} \ln(x) dx = \lim_{t \to 0^{+}} (x \ln(x) - x) \Big|_{t}^{1}$$
$$= \lim_{t \to 0^{+}} (t - t \ln(t) - 1) = -1,$$

(pois $\lim_{t\to 0^+} t \ln(t) = 0$) ou seja, a integral imprópria $\int_0^1 x \ln(x) \, dx$ é convergente.

Definição 1.18 (a) Seja f uma função não limitada em [a,b) e integrável em [a,t] para todo a < t < b. A integral imprópria de f em [a,b) é definido por

$$\int_a^b f(x) dx = \lim_{t \to b^-} \int_a^t f(x) dx.$$

Se o limite existire for finito, dizemos que a integral imprópria é convergente. Caso contrário, divergente.

(b) Seja f uma função não limitada em [a,p) e (p,b]. Se as duas integrais impróprias $\int_a^p f(x) dx$ e $\int_p^b f(x) dx$ são convergentes, então definimos a integral imprópria de f em [a,b] como

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{p} f(x) \, dx + \int_{p}^{b} f(x) \, dx.$$

Exemplo 1.19 Considere a função $f(x) = \frac{1}{\sqrt[3]{x-1}}$. Temos

$$\int_0^1 \frac{1}{\sqrt[3]{x-1}} dx = \lim_{t \to 1^-} \int_0^t \frac{1}{\sqrt[3]{x-1}} dx = \lim_{t \to 1^-} \frac{3}{2} (x-1)^{2/3} \Big|_0^t$$
$$= \lim_{t \to 1^-} \left(\frac{3}{2} (t-1)^{2/3} - \frac{3}{2} \right) = -\frac{3}{2}.$$

De modo análogo, temos que $\int_1^3 \frac{1}{\sqrt[3]{x-1}} dx = \lim_{t \to 1^+} \int_t^3 \frac{1}{\sqrt[3]{x-1}} dx = \frac{3}{2} \sqrt[3]{4}$. Portanto,

$$\int_0^3 \frac{1}{\sqrt[3]{x-1}} \, dx = \int_0^1 \frac{1}{\sqrt[3]{x-1}} \, dx + \int_1^3 \frac{1}{\sqrt[3]{x-1}} \, dx = \frac{3}{2} (\sqrt[3]{4} - 1).$$

Exemplo 1.20 Considere a integral imprópria

$$\int_0^{2/\pi} \left(2x \operatorname{sen}(1/x) - \cos(1/x) \right) dx.$$

Temos,

$$\int_{0}^{2/\pi} \left(2x \operatorname{sen}(1/x) - \cos(1/x) \right) dx$$

$$= \lim_{t \to 0^{+}} \int_{t}^{2/\pi} \left(2x \operatorname{sen}(1/x) - \cos(1/x) \right) dx$$

$$= \lim_{t \to 0^{+}} \left(x^{2} \operatorname{sen}(1/x) \Big|_{t}^{2/\pi} \right)$$

$$= \lim_{t \to 0^{+}} \left(\frac{4}{\pi^{2}} - t^{2} \operatorname{sen}(1/t) \right) = \frac{4}{\pi^{2}},$$

pois $\lim_{t\to 0^+} t^2 \operatorname{sen}(1/t) = 0$. De modo análogo, obtemos que

$$\int_{-2/\pi}^{0} \left(2x \operatorname{sen}(1/x) - \cos(1/x) \right) dx = \frac{4}{\pi^2}.$$

Portanto,

$$\int_{-2/\pi}^{2/\pi} \left(2x \operatorname{sen}\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right) dx$$

$$= \int_{-2/\pi}^{0} \left(2x \operatorname{sen}\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right) dx$$

$$+ \int_{0}^{2/\pi} \left(2x \operatorname{sen}\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right) dx$$

$$= \frac{4}{\pi^2} + \frac{4}{\pi^2} = \frac{8}{\pi^2}.$$

Exemplo 1.21 A função $f(x) = (1-x)^{-p}$ é localmente integrável em [0,1).

(a) Para $p \neq 1$ temos

$$\int_{0}^{1} \frac{1}{(1-x)^{p}} dx = \lim_{t \to 1^{-}} \int_{0}^{t} \frac{1}{(1-x)^{p}} dx$$

$$= \lim_{t \to 1^{-}} \left(\frac{(1-x)^{-p+1}}{p-1} \Big|_{0}^{t} \right)$$

$$= \lim_{t \to 1^{-}} \frac{(1-t)^{1-p} - 1}{p-1} = \begin{cases} 1/(1-p), & \text{se } p < 1, \\ \infty, & \text{se } p > 1. \end{cases}$$

(b) Para p = 1, temos

$$\int_{0}^{1} \frac{1}{1-x} dx = \lim_{t \to 1^{-}} \int_{0}^{t} \frac{1}{1-x} dx$$
$$= \lim_{t \to 1^{-}} -\ln(1-x) \Big|_{0}^{t}$$
$$= \lim_{t \to 1^{-}} -\ln(1-t) = \infty.$$

Portanto,

$$\int_0^1 \frac{1}{(1-x)^p} dx = \begin{cases} 1/(1-p), & \text{se } p < 1 \text{ (convergente),} \\ \infty, & \text{se } p \ge 1 \text{ (divergente).} \end{cases}$$

Exemplo 1.22 Vamos determinar para que valores de p a integral imprópria

$$\int_0^{2/\pi} \left(p \, x^{p-1} \cos(1/x) + x^{p-2} \sin(1/x) \right) dx$$

é convergente. Temos,

$$\int_{0}^{2/\pi} \left(p \, x^{p-1} \cos(1/x) + x^{p-2} \sin(1/x) \right) dx$$

$$= \lim_{t \to 0^{+}} \int_{t}^{2/\pi} \frac{d}{dx} \left(x^{p} \cos(1/x) \right) dx$$

$$= \lim_{t \to 0^{+}} x^{p} \cos(1/x) \Big|_{t}^{2/\pi}$$

$$= \lim_{t \to 0^{+}} -t^{p} \cos(1/t).$$

Para p>0 temos que $\lim_{t\to 0^+}t^p\cos(1/t)=0$. Já para valores $p\leq 0$, o limite $\lim_{t\to 0^+}t^p\cos(1/t)$ não existe. Portanto, a integral imprópria é convergente se p>0 e divergente se $p\leq 0$.

Observação 1.23 (a) Na Definição 1.18 (b), se as duas integrais impróprias $\int_a^b f(x) dx$ e $\int_p^b f(x) dx$ existem, então definimos a integral imprópria de f sobre [a,b] como a soma

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{p} f(x) \, dx + \int_{p}^{b} f(x) \, dx,$$

ou com a notação de limite

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{p-\varepsilon} f(x) dx + \lim_{\delta \to 0^{+}} \int_{p+\delta}^{b} f(x) dx. \tag{1}$$

Se esses dois limites existem, então também existe o limite

$$\lim_{\varepsilon \to 0^+} \left(\int_a^{p-\varepsilon} f(x) \, dx + \int_{p+\varepsilon}^b f(x) \, dx \right) \tag{2}$$

e tem o mesmo valor. Entretanto, a existência do limite (2) não implica a existência de (1). Por exemplo, considerando a função $f(x) = 1/x^3$ (e $0 < \varepsilon < 1$), temos

$$\lim_{\varepsilon \to 0^+} \left(\int_{-1}^{-\varepsilon} \frac{1}{x^3} dx + \int_{\varepsilon}^1 \frac{1}{x^3} dx \right) = \lim_{\varepsilon \to 0^+} \left[\left(\frac{1}{2} - \frac{1}{2\varepsilon^2} \right) - \left(\frac{1}{2} - \frac{1}{2\varepsilon^2} \right) \right] = 0,$$

mas as integrais impróprias $\int_{-1}^{0} \frac{1}{x^3} dx$ e $\int_{0}^{1} \frac{1}{x^3} dx$ não existem (são divergentes).

Definimos a integral imprópria de f (também chamada integral de Cauchy) como a integral dada por (1). O limite (2)(quando existe) é chamado valor principal de Cauchy da integral e denotado por v.p.c. $\int_a^b f(x) \, dx$.

Generalizando, uma função que tenha um número finito de pontos onde não é definida ou não limitada pode ser tratada subdividindo-se o intervalo em subintervalos com esses extremos. (b) Considere agora a integral imprópria sobre $(-\infty, \infty)$,

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{b \to -\infty} \int_{b}^{0} f(x) dx + \lim_{c \to \infty} \int_{0}^{c} f(x) dx.$$
 (3)

A existência do limite

$$\lim_{r \to \infty} \int_{-r}^{r} f(x) \, dx \tag{4}$$

não implica que a integral imprópria $\int_{-\infty}^{\infty} f(x) \, dx$ seja convergente. Por exemplo, $\lim_{r \to \infty} \int_{-r}^{r} x \, dx = 0$, mas $\int_{0}^{\infty} x \, dx$ e $\int_{-\infty}^{0} x \, dx$ são divergentes. O limite (4), quando existe, é chamado valor principal de Cauchy da integral imprópria sobre $\mathbb R$ e denotado por v.p.c. $\int_{-\infty}^{\infty} f(x) \, dx$.

2. Integrais Impróprias de Funções Não Negativas

Nesta seção vamos estudar as integrais impróprias de funções não negativas. Apresentaremos alguns testes para garantir que uma integral imprópria é convergente ou divergente.

Teorema 2.1 Seja $f:[a,\infty)\to\mathbb{R}$ uma função localmente integrável e suponha que $f(x)\geq 0$. Então a integral imprópria $\int_a^\infty f(x)\,dx$ é convergente se, e somente se, função $F(x)=\int_a^x f(t)\,dt$ é limitada.

Demonstração Como $f(x) \ge 0$ para todo $x \in [a, \infty)$, temos que F é uma função monótona não decrescente em $[a, \infty)$. Portanto, a existência do limite $\lim_{x \to \infty} F(x)$ equivale ao conjunto $\left\{ \int_a^c f(t) \, dt : c \ge a \right\}$ ser limitado.

Teorema 2.2 (Critério da Comparação) Sejam f e g duas funções localmente integráveis em $[a, \infty)$ e satisfazendo $0 \le f(x) \le g(x)$.

- (i) Se $\int_a^\infty g(x) dx$ é convergente, então $\int_a^\infty f(x) dx$ é convergente.
- (ii) Se $\int_a^\infty f(x) dx$ é divergente, então $\int_a^\infty g(x) dx$ é divergente.

Demonstração (i) Temos que $\int_a^\infty g(x)\,dx = \lim_{t\to\infty} \int_a^t g(x)\,dx = M < \infty$.

Como $0 \le f(x) \le g(x)$, obtemos que, para todo $a < t < \infty$,

$$\int_a^t f(x) dx \le \int_a^t g(x) dx \le \int_0^\infty g(x) dx = M.$$

Como a função $F(t)=\int_a^t f(x)\,dx$ é não decrescente e limitada $(0\leq F(t)\leq M)$, resulta que o limite $\lim_{t\to\infty}F(t)=\lim_{t\to\infty}\int_a^t f(x)\,dx$ existe e é finito. Portanto, a integral imprópria $\int_a^\infty f(x)\,dx$ é convergente.

Observação 2.3 O Critério da Comparação é válido para qualquer tipo de integral imprópria. Ele é útil se o integrando da integral imprópria é complicado mas pode ser comparado com uma função que é mais fácil de ser integrável.

Exemplo 2.4 Considere as funções $f(x) = e^{-x}\cos^2(x)$ e $g(x) = e^{-x}$ em $[0, \infty)$. Temos que

$$0 \le e^{-x} \cos^2(x) \le e^{-x}.$$

Além disso, também temos que $\int_0^\infty \mathrm{e}^{-x} dx = 1$, ou seja, convergente. Portanto, pelo Teorema 2.2, a integral $\int_0^\infty \mathrm{e}^{-x} \cos^2(x) \, dx$ é convergente.

Exemplo 2.5 Considere a integral imprópria $\int_0^1 \frac{2 + \cos(\pi x)}{(1 - x)^p} dx$.

(i) Para p < 1 e $0 \le x < 1$, temos

$$0 < \frac{2 + \cos(\pi x)}{(1 - x)^p} \le \frac{3}{(1 - x)^p}.$$

Pelo Exemplo 1.21, temos que $\int_0^1 \frac{1}{(1-x)^p} dx$ é convergente se p < 1. Portanto, aplicando o Teorema 2.2, obtemos que $\int_0^1 \frac{2+\cos(\pi x)}{(1-x)^p} dx$ é convergente (se p < 1).

(ii) Para $p \ge 1$, temos

$$0 < \frac{1}{(1-x)^p} \le \frac{2 + \cos(\pi x)}{(1-x)^p},$$

e como $\int_0^1 \frac{1}{(1-x)^p} dx$ é divergente (se $p \ge 1$), então a integral imprópria

$$\int_0^1 \frac{2 + \cos(\pi x)}{(1 - x)^p} dx$$

é divergente se $p \ge 1$.

Observação 2.6 Seja $f:[a,\infty) \to \mathbb{R}$ uma função localmente integável. Então se $a < a_1 < c < \infty$ temos

$$\int_{a}^{c} f(x) dx = \int_{a}^{a_{1}} f(x) dx + \int_{a_{1}}^{c} f(x) dx.$$

Como $\int_a^{a_1} f(x) \, dx$ é uma integral definida, fazendo $c \to \infty$, concluímos que se uma das integrais impróprias $\int_a^\infty f(x) \, dx$ ou $\int_{a_1}^\infty f(x) \, dx$ for convergente, então a outra também será convergente, e neste caso

$$\int_{a}^{\infty} f(x) \, dx = \int_{a}^{a_1} f(x) \, dx + \int_{a_1}^{\infty} f(x) \, dx.$$

Isto significa que todo teorema envolvendo convergência ou divergência de integral imprópria $\int_a^\infty f(x)\,dx$ no sentido da Definição 1.3 continua válido se as hipóteses são satisfeitas em um subintervalo $[a_1,\infty)$ de $[a,\infty)$. Por exemplo, o Teorema 2.2 continua válido se $0 \le f(x) \le g(x)$ em $a_1 \le x < \infty$, onde a_1 é algum ponto em $[a,\infty)$. Com isso, se $f(x) \ge 0$ para algum intervalo $[a_1,\infty)$ de $[a,\infty)$, mas não necessáriamente para todo $x \in [a,\infty)$, continuaremos a usar a convenção introduzida para funções não negativas, isto é, escrevemos $\int_a^\infty f(x)\,dx < \infty$ se a integral imprópria converge. A mesma observação é válida para qualquer tipo de integral imprópria.

Exemplo 2.7 Considere, para $p \ge 0$, a função

$$f(x) = \frac{(x-1)^p(2+\sin(x))}{(x-1/3)^{2p}}.$$

Para x suficientemente grande temos que

$$\frac{1}{2x^p} \le \frac{(x-1)^p(2+\sin(x))}{(x-1/3)^{2p}} \le \frac{4}{x^p}.$$

De fato, para x > 1 temos

(a)
$$0 < x^p f(x) = x^p \frac{(x-1)^p (2+\sin(x))}{(x-1/3)^{2p}} \le 3x^p \frac{(x-1)^p}{(x-1/3)^{2p}} = g(x).$$

Temos que $\lim_{x \to \infty} g(x) = 3$. Logo, para todo $\varepsilon > 0$ existe $M_1 > 0$ tal que se $x > M_1$

Temos que $\lim_{x\to\infty} g(x)=3$. Logo, para todo $\varepsilon>0$ existe $M_1>0$ tal que se $x>M_1$ implica $|g(x)-3|\leq \varepsilon$ (ou seja, $3-\varepsilon\leq g(x)\leq 3+\varepsilon$). Em particular, para $\varepsilon=1$ existe $M_1>0$ tal que $x^p f(x)\leq g(x)\leq 4$, ou seja, $f(x)\leq \frac{4}{x^p}$, para $x>M_1$.

(b) Também temos $x^p f(x) = x^p \frac{(x-1)^p (2+\sin(x))}{(x-1/3)^{2p}} \ge x^p \frac{(x-1)^p}{(x-1/3)^{2p}} = h(x)$. Como $\lim_{x\to\infty} h(x) = 1$, dado qualquer $\varepsilon > 0$ existe $M_2 > 0$ tal que se $x > M_2$ temos $|h(x)-1| \le \varepsilon$. Em particular, para $\varepsilon = 1/2$ existe $M_2 > 0$ tal que $h(x) \ge 1/2$. Logo, $x^p f(x) \ge h(x) \ge 1/2$, ou seja, $f(x) \ge \frac{1}{2x^p}$, para $x > M_2$. Com isso, escolhendo $M = \max\{M_1, M_2\}$, temos para x > M

$$\frac{1}{2x^p} \le \frac{(x-1)^p(2+\operatorname{sen}(x))}{(x-1/3)^{2p}} \le \frac{4}{x^p}.$$

Portanto, usando o Teste da Comparação e o Exemplo 1.12, temos que a integral imprópria

$$\int_{1}^{\infty} \frac{(x-1)^{p}(2+\sin(x))}{(x-1/3)^{2p}} dx$$

é convergente se p > 1 e divergente se $p \le 1$.

Exemplo 2.8 Considere a integral imprópria $\int_1^\infty \frac{\ln(x) + \text{sen}(x)}{\sqrt{x}} dx$. Observe que, para $x > e^2$,

$$\frac{\ln(x) + \operatorname{sen}(x)}{\sqrt{x}} \ge \frac{1}{\sqrt{x}}.$$

Como

$$\int_{e^2}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{t \to \infty} \int_{e^2}^{t} \frac{1}{\sqrt{x}} dx$$
$$= \lim_{t \to \infty} 2\sqrt{x} \Big|_{e^2}^{t}$$
$$= \lim_{t \to \infty} (2\sqrt{x} - 2e) = \infty,$$

então, pelo Teste da Comparação, $\int_{\mathrm{e}^2}^\infty \frac{\ln(x) + \mathrm{sen}(x)}{\sqrt{x}} dx$ é divergente. Portanto, a integral imprópria $\int_1^\infty \frac{\ln(x) + \mathrm{sen}(x)}{\sqrt{x}} dx$ é divergente.

Exemplo 2.9 Vamos estudar a integral imprópria $\int_0^\infty \frac{4+\cos(x)}{(1+x)\sqrt{x}} dx$. Considere as integrais impróprias

$$I_1 = \int_0^1 \frac{4 + \cos(x)}{(1+x)\sqrt{x}} dx$$
 e $I_2 = \int_1^\infty \frac{4 + \cos(x)}{(1+x)\sqrt{x}} dx$.

- (i) Para 0 < x < 1, temos $0 < \frac{4 + \cos(x)}{(1 + x)\sqrt{x}} < \frac{5}{\sqrt{x}}$, e como a integral imprópria $\int_0^1 \frac{5}{\sqrt{x}} dx$ é convergente, então I_1 é convergente.
- (ii) Para x>1, temos $0<\frac{4+\cos(x)}{(1+x)\sqrt{x}}<\frac{5}{x^{3/2}}$. Como a integral imprópria $\int_1^\infty \frac{5}{x^{3/2}}\,dx$ é convergente, então I_2 é convergente.

Portanto, $\int_0^\infty \frac{4 + \cos(x)}{(1+x)\sqrt{x}} dx = I_1 + I_2$ é convergente.

Teorema 2.10 (Teste Limite da Comparação) Suponha que as funções f e g são localmente integráveis em [a,b) (com $b<\infty$ ou $b=\infty$), $f(x)\geq 0$, g(x)>0 e que

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = M \ \left(ou \ \lim_{x \to \infty} \frac{f(x)}{g(x)} = M, \ hboxse \ b = \infty \right). \tag{5}$$

(i) Se $0 < M < \infty$, então $\int_a^b f(x) dx$ e $\int_a^b g(x) dx$ são ambas convergente ou ambas divergentes.

(ii) Se
$$M = \infty$$
 e $\int_a^b g(x) dx = \infty$, então $\int_a^b f(x) dx = \infty$.

(iii) Se
$$M=0$$
 e $\int_a^b g(x) dx$ é convergente, então $\int_a^b f(x) dx$ é convergente.

Demonstração (i) Por (5) (usando a definição de limite) existe $a_1 \in [a, b)$ tal que

$$0 < \frac{M}{2} < \frac{f(x)}{g(x)} < \frac{3M}{2}$$
, se $a_1 \le x < b$,

e portanto, para $a_1 \le x <, b$, temos

$$\frac{M}{2}g(x) < f(x) < \frac{3}{2}Mg(x).$$
 (6)

Se a integral imprópria de g em [a,b) é convergente e como g(x)>0, então

$$\int_{a_1}^b g(x) \, dx \le \int_a^b g(x) \, dx < \infty.$$

Logo, usando (6), obtemos $\int_{a_1}^b f(x) dx < \infty$. Com isso, usando que f é localmente integrável, obtemos

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{a_{1}} f(x) \, dx + \int_{a_{1}}^{\infty} f(x) \, dx < \infty.$$

Agora se $\int_{a_1}^b g(x) dx$ é divergente, por (6) $(\frac{M}{2}g(x) < f(x))$ e pelo Critério da Comparação, obtemos que $\int_{a_1}^b f(x) dx$ também é divergente. Logo, $\int_a^b f(x) dx$ é divergente.

- (ii) Se $M=\infty$, existe $a_2\in[a,b)$ tal que $f(x)\geq g(x)$ se $x\in[a_2,b)$. Logo, pelo Critério da Comparação, se $\int_a^b g(x)\,dx=\infty$, então $\int_a^b f(x)\,dx=\infty$.
- (iii) Se M=0, então existe $a_3\in [a,b)$ tal que $f(x)\leq g(x)$ se $x\in [a_3,b)$. Usando o Critério da Comparação, se $\int_{a_3}^b g(x)\,dx$ é convergente, então $\int_{a_3}^b f(x)\,dx$ é convergente. Portanto,

$$\int_{a}^{b} f(x) dx = \int_{a}^{a_{3}} f(x) dx + \int_{a_{3}}^{b} f(x) dx < \infty.$$

Exemplo 2.11 Vamos determinar para que valores de $p \in \mathbb{R}$ a integral imprópria

$$\int_0^{\pi/2} \frac{\operatorname{sen}(x)}{x^p} \, dx$$

é convergente usando o Teorema 2.10. Considere as funções

$$f(x) = \frac{\text{sen}(x)}{x^p}$$
 e $g(x) = \frac{1}{x^{p-1}}$.

Temos que $\lim_{x\to 0^+} \frac{f(x)}{g(x)} = \lim_{x\to 0^+} \frac{\operatorname{sen}(x)}{x} = 1$. Além disso,

$$\int_0^{\pi/2} g(x) dx = \lim_{t \to 0^+} \int_t^{\pi/2} \frac{1}{x^{p-1}} dx = \lim_{t \to 0^+} \left(\frac{x^{2-p}}{2-p} \Big|_t^{\pi/2} \right)$$
$$= \lim_{t \to 0^+} \frac{1}{2-p} \left((\pi/2)^{2-p} - t^{2-p} \right) = \frac{1}{2-p} \left(\frac{\pi}{2} \right)^{2-p},$$

se p < 2. Portanto, pelo Teste Limite da Comparação, a integral imprópria $\int_0^{\pi/2} \frac{\sin(x)}{x^p} dx$ é convergente se p < 2.

Exemplo 2.12 A função $f(x) = \frac{1}{x^p(1+x)^q}$ é localmente integrável em $(0,\infty)$ com $p,q \in \mathbb{R}$. Considere a integral imprópria $\int_0^\infty \frac{1}{x^p(1+x)^q} dx$. Para verificar para quais valores de p e q a integral imprópria é convergente, considere as seguintes integrais impróprias

$$J_1 = \int_0^1 \frac{1}{x^p (1+x)^q} dx$$
 e $J_2 = \int_1^\infty \frac{1}{x^p (1+x)^q} dx$.

(i) Analisando a integral imprópria J_1 . Considere $g(x) = \frac{1}{x^p}$. Temos,

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{1}{(1+x)^q} = 1.$$

Como,

$$\int_0^1 g(x) dx = \int_0^1 \frac{1}{x^p} dx = \begin{cases} 1/(1-p), & \text{se } p < 1 \\ \infty, & \text{se } p \ge 1 \end{cases}$$

então, aplicando o Teorema 2.10, temos que $J_1 = \int_0^1 \frac{1}{x^p(1+x)^q} dx$ é convergente se p < 1 (para qualquer valor de q).

(ii) Analisando a integral imprópria $J_2=\int_1^\infty \frac{1}{x^p(1+x)^q}\,dx$. Considerando agora a função $h(x)=\frac{1}{x^{p+q}}$, temos

$$\lim_{x \to \infty} \frac{f(x)}{h(x)} = \lim_{x \to \infty} \frac{x^q}{(1+x)^q} = 1.$$

Como

$$\int_{1}^{\infty} h(x) dx = \int_{1}^{\infty} \frac{1}{x^{p+q}} dx = \begin{cases} 1/(p+q-1), & \text{se } p+q > 1\\ \infty, & \text{se } p+q \le 1 \end{cases}$$

então, aplicando o Teorema 2.10, $J_2 = \int_1^\infty \frac{1}{x^p(1+x)^q} dx$ é convergente se p+q>1.

Portanto, combinando (i) e (ii), obtemos que $\int_0^\infty \frac{1}{x^p(1+x)^q} dx$ é convergente se p < 1 e p + q > 1. Por exemplo,

(a)
$$\int_0^\infty \frac{1}{\sqrt{x}(1+x)^2} dx$$
 (com $p = 1/2 e q = 2$),
(b) $\int_0^\infty \frac{1}{\sqrt[3]{x}(1+x)^5} dx$ (com $p = 1/3 e q = 5$),

(c)
$$\int_0^\infty \frac{x^5}{(1+x)^8} dx$$
 (com $p = -5 \text{ e } q = 8$),

são integrais impróprias convergentes.

Exemplo 2.13 Considere a integral imprópria $\int_1^\infty \frac{(x-\sin(x))^6}{x^8} dx$, com $f(x) = \frac{(x-\sin(x))^6}{x^8}$. Usando a função $g(x) = 1/x^2$, temos

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{(x - \operatorname{sen}(x))^6}{x^6} = 0.$$

Como a integral imprópria $\int_1^\infty g(x)\,dx=\int_1^\infty \frac{1}{x^2}\,dx$ é convergente, então pelo Teorema 2.10(iii), temos que $\int_1^\infty \frac{(x-\sin(x))^6}{x^8}\,dx$ é convergente.

3. Funções Absolutamente Integráveis

O Critério da Comparação (Teorema 2.2) e o Teste Limite da Comparação (Teorema 2.10) podem ser usados para o estudo da convergência ou divergência de integrais impróprias de funções não negativas. Nesta seção, vamos apresentar critérios para o estudo de integrais impróprias de funções que mudam de sinal no intervalo de integração.

Definição 3.1 Dizemos que uma função $f:[a,\infty)\to\mathbb{R}$ é absolutamente integrável em $[a,\infty)$ se f é localmente integrável em $[0,\infty)$ e $\int_a^\infty |f(x)|\,dx$ é convergente. Neste caso, também dizemos que a integral imprópria $\int_a^\infty f(x)\,dx$ é absolutamente convergente

Teorema 3.2 Se f é uma função absolutamente integrável em $[a, \infty)$, então $\int_a^{\infty} f(x) dx$ é convergente.

Demonstração Temos que

$$0 \le |f(x)| + f(x) \le 2|f(x)|$$
.

Como $\int_a^\infty |f(x)| \, dx$ é convergente, podemos usar o Critério da Comparação (Teorema 2.2), para concluir que a integral imprópria $\int_0^\infty (|f(x)| + f(x)) \, dx$ é convergente. Podemos escrever, para todo $a < t < \infty$,

$$\int_{a}^{t} f(x) dx = \int_{a}^{t} (|f(x)| + f(x)) dx - \int_{a}^{t} |f(x)| dx.$$

Como as integrais impróprias $\int_0^\infty (|f(x)|+f(x))\,dx$ e $\int_0^\infty |f(x)|\,dx$ são convergentes, então $\int_0^\infty f(x)\,dx$ também é convergente.

Exemplo 3.3 Considere a integral imprópria $\int_0^\infty e^{-x} \cos^3(x) dx$. Observe que

$$0 \le |e^{-x}\cos^3(x)| \le e^{-x}$$
.

Como $\int_0^\infty e^{-x} dx$ é convergente, então $\int_0^\infty |e^{-x}\cos^3(x)| dx$ é convergente (pelo Critério da Comparação). Portanto, $\int_0^\infty e^{-x}\cos^3(x) dx$ é (absolutamente) convergente.

Exemplo 3.4 A recíproca do Teorema 3.2 não é verdadeira. Vamos verificar que a integral imprópria $\int_1^\infty \frac{\operatorname{sen}(x)}{x} \, dx$ é convergente e que a integral imprópria $\int_1^\infty \left| \frac{\operatorname{sen}(x)}{x} \right| \, dx$ é divergente.

(i) Usando integração por partes, obtemos

$$\int_{1}^{t} \frac{1}{x} \operatorname{sen}(x) \, dx = -\frac{\cos(t)}{t} + \cos(1) - \int_{1}^{t} \frac{\cos(x)}{x^{2}} \, dx.$$

Para $x \ge 1$, temos $0 \le \left| \frac{\cos x}{x^2} \right| \le \frac{1}{x^2} \operatorname{e} \int_1^\infty \frac{1}{x^2} \, dx$ é convergente. Logo, a integral imprópria $\int_1^\infty \frac{\cos x}{x^2} \, dx$ é (absolutamente) convergente. Além disso, também temos

$$\lim_{t\to\infty}\frac{\cos(t)}{t}=0.$$

Portanto,

$$\int_{1}^{\infty} \frac{\operatorname{sen} x}{x} \, dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\operatorname{sen} x}{x} \, dx$$

$$= \lim_{t \to \infty} \left(-\frac{\cos(t)}{t} + \cos(1) - \int_{1}^{t} \frac{\cos(x)}{x^{2}} \, dx \right)$$

$$= \cos(1) - \int_{1}^{\infty} \frac{\cos(x)}{x^{2}} \, dx < \infty.$$

(ii) Para todo $x \in \mathbb{R}$ temos que $|\text{sen}(x)| \le 1$. Logo, $\text{sen}^2(x) \le |\text{sen}(x)|$. Para $x \ge 1$ obtemos

$$\left|\frac{\operatorname{sen}(x)}{x}\right| \ge \frac{\operatorname{sen}^2(x)}{x}.$$

Usando integração por partes, obtemos

$$\int_{1}^{t} \frac{\sin^{2}(x)}{x} dx = -\frac{\sin(2t)}{4t} + \frac{\sin(2)}{4} + \int_{1}^{t} \left(\frac{1}{2x} - \frac{\sin(2x)}{4x^{2}}\right) dx.$$

Usando que a integral imprópria $\int_{1}^{\infty} \frac{\sin(2x)}{4x^2} dx$ é (absolutamente) convergente,

$$\int_{1}^{\infty} \frac{1}{2x} \, dx = \infty$$

e $\lim_{t\to\infty} \frac{\operatorname{sen}(2t)}{4t} = 0$, obtemos que

$$\lim_{t\to\infty}\int_1^t \frac{\sin^2(x)}{x} dx = \infty.$$

Logo, pelo Critério da Comparação, $\int_1^\infty \left| \frac{\sin(x)}{x} \right| dx$ é divergente. Temos

$$\int_{1}^{\infty} \left| \frac{\operatorname{sen}(x)}{x} \right| dx = \int_{1}^{\infty} \frac{\left| \operatorname{sen}(x) \right|}{x} dx \ge \int_{1}^{\infty} \frac{\operatorname{sen}^{2}(x)}{x} dx = \infty,$$

ou seja, $\int_{1}^{\infty} \left| \frac{\operatorname{sen}(x)}{x} \right| dx = \infty.$

Exemplo 3.5 Considere a integral imprópria $\int_1^\infty \frac{e^{-x} sen^3(x)}{x^2} dx$. Temos que, para $x \ge 1$,

$$0 \le \left| \frac{\mathrm{e}^{-x} \mathrm{sen}^3(x)}{x^2} \right| \le \frac{1}{x^2}.$$

Como $\int_1^\infty \frac{1}{x^2} dx = 1$ (ou seja, convergente) então $\int_1^\infty \left| \frac{\mathrm{e}^{-x} \mathrm{sen}^3(x)}{x^2} \right| dx$ é convergente. Portanto, $\int_1^\infty \frac{\mathrm{e}^{-x} \mathrm{sen}^3(x)}{x^2} dx$ é absolutamente convergente (e então, convergente).

Teorema 3.6 (Teste de Dirichlet) Seja h(x) = f(x)g(x) e suponha que

(i) a função f é contínua e $F(x) = \int_a^x f(t) dt$ é limitada em [a,b) (com $b < \infty$ ou $b = \infty$);

(ii) a função $g:[a,b)\to\mathbb{R}$ é derivável com g' absolutamente integrável (ou seja, $\int_a^b |g'(x)|\,dx<\infty$) $e\lim_{x\to b^-} g(x)=0$ (ou $\lim_{x\to\infty} g(x)=0$ se $b=\infty$).

Então, a integral imprópria $\int_a^b f(x) g(x) dx$ é convergente.

Demonstração Como a função h(x) = f(x) g(x) é contínua em [a,b), então também é localmente integrável em [a,b). Lembrando que se $F(x) = \int_a^x f(t) \, dt$ então F'(x) = f(x). Para $a \le t < b$, usando integração por partes, obtemos

$$\int_{a}^{t} f(x) g(x) dx = F(t) g(t) - \int_{a}^{t} F(x) g'(x) dx.$$

Usando que F é limitada (ou seja, $|F(x)| \le C$ para todo $x \in [a,b)$) e que g' é absolutamente integrável, pelo Critério da Comparação, temos que

$$\int_{a}^{b} |F(x) g'(x)| dx = \lim_{t \to b^{-}} \int_{a}^{t} |F(x) g'(x)| dx < \infty,$$

pois $\int_a^t |F(x)g'(x)| dx \le C \int_a^t |g'(x)| dx$.

Além disso, como $\lim_{t\to b^-}F(t)\,g(t)=0$ (pois F é limitada e $\lim_{t\to b^-}g(t)=0$), obtemos

$$\int_{a}^{b} f(x) g(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) g(x) dx$$

$$= \lim_{t \to b^{-}} \left(F(t)g(t) - \int_{a}^{t} F(x)g'(x) dx \right)$$

$$= - \int_{a}^{b} F(x) g'(x) dx < \infty.$$

Exemplo 3.7 Considere a integral imprópria $\int_1^\infty \frac{\sin(x)}{x^p} dx$, com $0 . Usando o Teste de Dirichlet com <math>f(x) = \sin(x)$ e $g(x) = \frac{1}{x^p}$, temos que $\int_1^\infty \frac{\sin(x)}{x^p} dx$ é convergente (com 0).

Exemplo 3.8 Considere a integral imprópria $\int_0^\infty \sin(x^2) \, dx$ (chamada de integral de Fresnel). Observe que $\int_0^1 \sin(x^2) \, dx$ é finita (pois $f(x) = \sin(x^2)$ é contínua). Para c>1, aplicando o Teorema de Mudança de Variável (com $t=x^2$), obtemos

$$\int_{1}^{c} \operatorname{sen}(x^{2}) dx = \frac{1}{2} \int_{1}^{c^{2}} \frac{\operatorname{sen}(t)}{\sqrt{t}} dt.$$

Pelo Exemplo 3.7 (com p=1/2) temos que $\int_1^\infty \frac{\sin(t)}{\sqrt{t}} dt$ é convergente. Com isso,

$$\int_{1}^{\infty} \operatorname{sen}(x^{2}) dx = \int_{1}^{\infty} \frac{\operatorname{sen}(t)}{\sqrt{t}} dt$$

é convergente. Portanto,

$$\int_0^\infty \sin(x^2) \, dx = \int_0^1 \sin(x^2) \, dx + \int_1^\infty \sin(x^2) \, dx < \infty,$$

ou seja, convergente.

Exemplo 3.9 O teste de Dirichlet também pode ser usado para verificar que certas integrais impróprias são divergentes. Por exemplo, a integral imprópria $\int_1^\infty x^p \sec(x) \, dx$ é divergente se p>0. De fato, suponha que essa integral imprópria seja convergente para algum p>0. Então, a função definida por $F(x)=\int_1^x t^p \sec(t) \, dt$ seria limitada em $[1,\infty)$, e usando $f(x)=x^p \sec(x)$ e $g(x)=1/x^p$ no Teorema 3.6 concluiriamos que $\int_1^\infty \sec(x) \, dx$ também é convergente. Mas $\int_1^\infty \sec(x) \, dx$ é divergente. Portanto, $\int_1^\infty x^p \sec(x) \, dx$ é divergente se p>0.

4. Mais alguns exemplos

Exemplo 4.1 Considere a integral imprópria $\int_0^\infty e^{-x} sen(x) dx$. Usando integração por partes obtemos

$$\int e^{-x} sen(x) dx = -\frac{1}{2} e^{-x} (sen(x) + cos(x)).$$

Logo,

$$\int_0^\infty e^{-x} \operatorname{sen}(x) \, dx = \lim_{t \to \infty} \int_0^t e^{-x} \operatorname{sen}(x) \, dx$$

$$= \lim_{t \to \infty} \left(-\frac{1}{2} e^{-x} (\operatorname{sen}(x) + \cos(x)) \Big|_0^t \right)$$

$$= \lim_{t \to \infty} \left(-\frac{1}{2} e^{-t} (\operatorname{sen}(t) + \cos(t)) + \frac{1}{2} \right)$$

$$= \frac{1}{2'}$$

pois $\lim_{t\to\infty} e^{-t} = 0$ e $|\operatorname{sen}(t) + \cos(t)| \le 2$.

Portanto, a integral imprópria $\int_0^\infty e^{-x} \operatorname{sen}(x) dx$ é convergente.

Exemplo 4.2 Vamos determinar para quais valores de $p \in \mathbb{R}$ a integral imprópria

$$\int_{2\pi}^{\infty} \left(p \, x^{p-1} \cos\left(\frac{1}{x}\right) + x^{p-2} \operatorname{sen}\left(\frac{1}{x}\right) \right) dx$$

é convergente.

Temos que

$$\int_{2\pi}^{\infty} \left(p \, x^{p-1} \cos\left(\frac{1}{x}\right) + x^{p-2} \sin\left(\frac{1}{x}\right) \right) dx$$

$$= \lim_{t \to \infty} \int_{2\pi}^{t} \frac{d}{dx} \left(x^{p} \cos\left(\frac{1}{x}\right) \right) dx$$

$$= \lim_{t \to \infty} \left(x^{p} \cos\left(\frac{1}{x}\right) \Big|_{2\pi}^{t} \right)$$

$$= \lim_{t \to \infty} \left(t^{p} \cos\left(\frac{1}{t}\right) - (2\pi)^{p} \cos\left(\frac{1}{2\pi}\right) \right).$$

Como o limite $\lim_{t\to\infty} t^p \cos(1/t)$ existe e é finito se $p \le 0$, obtemos que a integral imprópria $\int_{2\pi}^{\infty} \left(p \, x^{p-1} \cos\left(\frac{1}{x}\right) + x^{p-2} \sin\left(\frac{1}{x}\right) \right) dx$ é convergente se $p \le 0$ (e divergente se p > 0).

Exemplo 4.3 Vamos determinar se a integral imprópria

$$\int_{-\infty}^{\infty} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx$$

é convergente ou divergente.

Vamos estudar as duas integrais impróprias

$$\int_0^\infty \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx \ \text{e} \ \int_{-\infty}^0 \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx.$$

Se essas duas integrais impróprias forem convergentes, então podemos escrever

$$\int_{-\infty}^{\infty} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) dx = \int_{-\infty}^{0} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) dx + \int_{0}^{\infty} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) dx.$$

(a) Temos que a intergral $\int_0^{\sqrt{3}} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) dx$ existe (é finita) pois a função $f(x) = \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x)$ é contínua em $[0, \sqrt{3}]$. Para $x \ge \sqrt{3}$ temos que $x^2 + 3 \le x^2 + x^2 = 2x^2$ e $x^4 + 1 \ge x^4$. Logo,

$$0 \le \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \le \frac{(2x^2)^{3/2}}{(x^4)^{3/2}} = \frac{2\sqrt{2}}{x^3}.$$

Como a integral imprópria $\int_{\sqrt{3}}^{\infty} \frac{1}{x^3} dx$ é convergente, estão aplicando o Critério da Comparação, temos que $\int_{\sqrt{3}}^{\infty} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) dx$ é convergente. Portanto, podemos escrever

$$\int_0^\infty \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx = \int_0^{\sqrt{3}} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx + \int_{\sqrt{3}}^\infty \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx < \infty,$$

ou seja, é convergente

(b) Como $f(x) = \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x)$ é uma função par (f(-x) = f(x)), então

$$\int_{-\infty}^{0} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx = \int_{0}^{\infty} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx.$$

Portanto, a integral imprópria

$$\int_{-\infty}^{\infty} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx = \int_{-\infty}^{0} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx + \int_{0}^{\infty} \frac{(x^2+3)^{3/2}}{(x^4+1)^{3/2}} \operatorname{sen}^2(x) \, dx$$

é convergente.

Exemplo 4.4 Vamos determinar condições sobre $p, q \in \mathbb{R}$ para que a integral imprópria $\int_0^\infty \frac{x^p}{(1+x^2)^q} \, dx \text{ seja convergente.}$

Vamos analisar as integrais impróprias $\int_0^1 \frac{x^p}{(1+x^2)^q} dx$ e $\int_1^\infty \frac{x^p}{(1+x^2)^q} dx$.

(a) Se $0 < x \le 1$, então aplicando o Teste Limite da Comparação com

$$f(x) = \frac{x^p}{(1+x^2)^q} e g(x) = x^p$$
, obtemos

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{1}{(1+x^2)^q} = 1.$$

Como $\int_0^1 g(x) dx = \int_0^1 x^p dx$ é convergente se p > -1, então a integral imprópria

$$\int_0^1 f(x) \, dx = \int_0^1 \frac{x^p}{(1+x^2)^q} \, dx$$

e convergente se p > -1 (para qualquer valor de q).

(b) Para $x \ge 1$, temos que $(1 + x^2)^q \ge x^{2q}$. Logo,

$$0 < \frac{x^p}{(1+x^2)^q} \le \frac{x^p}{x^{2q}} = x^{p-2q}.$$

Como a integral imprópria $\int_1^\infty x^{p-2q}\,dx$ é convergente se p-2q+1<0 (ou seja, p<2q-1), então pelo Critério da Comparação a integral imprópria $\int_1^\infty \frac{x^p}{(1+x^2)^q}\,dx$ é convergente se p<2q-1.

Portanto, por (a) e (b), temos que a integral imprópria $\int_0^\infty \frac{x^p}{(1+x^2)^q} dx$ é convergente se -1 e neste caso

$$\int_0^\infty \frac{x^p}{(1+x^2)^q} \, dx = \int_0^1 \frac{x^p}{(1+x^2)^q} \, dx + \int_1^\infty \frac{x^p}{(1+x^2)^q} \, dx.$$

Por exemplo, $\int_0^\infty \frac{x^3}{(1+x^2)^4} dx$ (com p=3 e q=4) e $\int_0^\infty \frac{\sqrt{x}}{(1+x^2)^{3/2}} dx$ (com p=1/2 e q=3/2) são integrais impróprias convergentes.

Exemplo 4.5 Considere a integral imprópria $\int_2^\infty \frac{\operatorname{sen}(x)}{x(\ln(x))^p} dx$. Para $x \ge 2$ temos que $\ln(x) > 0$ (para $x \ge 2$). Logo,

$$\left|\frac{\operatorname{sen}(x)}{x(\ln(x))^p}\right| = \frac{|\operatorname{sen}(x)|}{|x(\ln(x))^p|} \le \frac{1}{x(\ln(x))^p}.$$

Para p > 1 temos

$$\int_{2}^{\infty} \frac{1}{x(\ln(x))^{p}} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x(\ln(x))^{p}} dx$$

$$= \lim_{t \to \infty} \frac{1}{1 - p} (\ln(x))^{1 - p} \Big|_{2}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{1}{1 - p} (\ln(t))^{1 - p} - \frac{1}{1 - p} (\ln(2))^{1 - p} \right]$$

$$= -\frac{1}{1 - p} (\ln(2))^{1 - p},$$

pois se p>1 (1-p<0) temos $\lim_{t\to\infty}\frac{1}{1-p}(\ln(t))^{1-p}=0$. Portanto, a integral imprópria

$$\int_2^\infty \frac{\operatorname{sen}(x)}{x(\ln(x))^p} \, dx$$

é (absolutamente) convergente se p > 1.

Exemplo 4.6 Considere a integral imprópria $\int_0^\infty \frac{\cos(x)}{(1+x^2)^3} dx$. Usando o teste de Dirichlet com

$$h(x) = \frac{\cos(x)}{(1+x^2)^3} = \frac{1}{(1+x^2)^3}\cos(x) = f(x)g(x),$$

sendo
$$g(x) = \frac{1}{(1+x^2)^3} e f(x) = \cos(x)$$
. Temos,

(i) a função $f(x) = \cos(x)$ é contínua em $[0, \infty)$ e também temos que a função $F(x) = \int_0^t f(x) \, dx = \int_0^t \cos(x) \, dx = \sin(t)$ é limitada em $[0, \infty)$;

(ii)
$$g'(x) = -\frac{6x}{(1+x^2)^4}$$
 é absolutamente integrável ($\int_0^\infty |g'(x)| \, dx < \infty$) e $\lim_{x \to \infty} g(x) = 0$.

Portanto, pelo Teste de Dirichlet, a integral imprópria $\int_0^\infty \frac{\cos(x)}{(1+x^2)^3} dx$ é convergente.

Exemplo 4.7 Considere a integral imprópria $\int_0^\infty \frac{x^4 \cos^2\left(\frac{1}{x}\right)}{(1+x^2)^3} dx$. Temos que

$$f(x) = \frac{x^4 \cos^2(\frac{1}{x})}{(1+x^2)^3} \ge 0 \text{ e } g(x) = \frac{1}{(1+x^2)} > 0.$$

Vamos verificar as condições do Teste do Limite da Comparação.

(a) Temos

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{(1+x^2)x^4 \cos^2(\frac{1}{x})}{(1+x^2)^3}$$

$$= \lim_{x \to \infty} \frac{x^6 \left(1 + \frac{1}{x^2}\right) \cos^2(\frac{1}{x})}{x^6 \left(1 + \frac{1}{x^2}\right)^3}$$

$$= \lim_{x \to \infty} \frac{\left(1 + \frac{1}{x^2}\right) \cos^2(\frac{1}{x})}{\left(1 + \frac{1}{x^2}\right)^3} = 1.$$

(b) Além disso, temos

$$\int_0^\infty g(x) dx = \lim_{t \to \infty} \int_0^t \frac{1}{1 + x^2} dx$$
$$= \lim_{t \to \infty} \operatorname{arctg}(x) \Big|_0^t$$
$$= \lim_{t \to \infty} \operatorname{arctg}(t) = \frac{\pi}{2}.$$

Portanto, pelo Teste Limite da Comparação (Teorema 2.10) a integral imprópria

$$\int_0^\infty \frac{x^4 \cos^2\left(\frac{1}{x}\right)}{(1+x^2)^3} \, dx$$

é convergente.

5. A função Gama e a função Beta de Euler

Nesta seção vamos apresentar alguns resultados da função gama de Euler (ou simplesmente, função gama), que é denotada por $\Gamma(x)$, $x \in D_{\Gamma} \subset \mathbb{R}$. A função gama pode ser utilizada na resolução de equações diferenciais ordinárias pelo método de expansão em séries de potências ou pelo método de Frobenius.

A função gama foi inicialmente concebida por Euler como uma generalização contínua do fatorial de números naturais: n!, para $n \in \mathbb{N}$. A ideia de Euler era encontrar uma função Γ que satisfizesse $\Gamma(1)=1$ e também satisfizesse a equação funcional $\Gamma(x+1)=x\,\Gamma(x)$ para todo x real positivo. Depois de várias tentativas Euler concluiu que a função

$$\Gamma(x) = \frac{1}{x} \prod_{m=1}^{\infty} \left[\left(1 + \frac{1}{m} \right)^x \left(1 + \frac{x}{m} \right)^{-1} \right] \tag{7}$$

satisfazia as condições desejadas. Euler estudou diversas propriedades da função definida em (7). Uma dessas propriedades identificadas por Euler foi o fato que $\Gamma(x)$ pode ser escrita na forma de uma integral

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$
 (8)

Vamos iniciar o nosso tratamento da função gama definindo-a por (8).

Definição 5.1 Para $\alpha \ge 1$ definimos a função

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha - 1} dx$$

que é chamada de função Gama.

Vamos verificar que esta integral imprópria é convergente.

Considere a função $g(x) = \frac{1}{x^2}$ para $x \ge 1$. Temos,

$$\lim_{x\to\infty}\frac{\mathrm{e}^{-x}x^{\alpha-1}}{x^2}=\lim_{x\to\infty}\frac{x^{\alpha+1}}{\mathrm{e}^x}=0.$$

Logo, dado $\varepsilon > 0$ existe $K = K(\varepsilon)$ tal que

$$0 < e^{-x} x^{\alpha+1} \le \varepsilon x^{-2}$$
, para $x \ge K$.

Como a integral imprópria $\int_K^\infty \frac{1}{x^2} dx$ é convergente, então $\int_K^\infty e^{-x} x^{\alpha-1} dx$ é convergente. Portanto, para $\alpha \ge 1$, temos que

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha - 1} dx < \infty.$$

Agora, para $0 < \alpha < 1$, temos que a integral imprópria $\int_0^1 x^{\alpha-1} dx$ é convergente. Como $0 < \mathrm{e}^{-x} \le 1$ para todo $x \ge 0$, temos pelo Critério da Comparação que a integral imprópria $\int_0^1 \mathrm{e}^{-x} \, x^{\alpha-1} \, dx$ é convergente (com $0 < \alpha < 1$). Logo, podemos definir a função Gama para todo $\alpha > 0$ considerando como a soma

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha - 1} dx = \int_0^1 e^{-x} x^{\alpha - 1} dx + \int_1^\infty e^{-x} x^{\alpha - 1} dx.$$

Temos que, para todo $\alpha > 0$,

$$\Gamma(\alpha + 1) = \alpha \, \Gamma(\alpha). \tag{9}$$

De fato,

$$\Gamma(\alpha + 1) = \int_0^\infty e^{-x} x^{(\alpha + 1) - 1} dx = \int_0^\infty e^{-x} x^{\alpha} dx.$$

Agora, usando integração por partes, obtemos

$$\int_0^t e^{-x} x^{\alpha} dx = -t^{\alpha} e^{-t} + \alpha \int_0^t e^{-x} x^{\alpha - 1} dx,$$

e então

$$\int_0^\infty e^{-x} x^{\alpha} dx = \lim_{t \to \infty} \int_0^t e^{-x} x^{\alpha} dx = \alpha \int_0^\infty e^{-x} x^{\alpha - 1} dx = \alpha \Gamma(\alpha),$$

pois $\lim_{t\to\infty}t^{\alpha}\mathrm{e}^{-t}=0$ para todo $\alpha\in\mathbb{R}$.

Portanto, $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, se $\alpha > 0$.

Com isso, temos

$$\Gamma(1) = \int_0^\infty e^{-x} dx = 1$$

$$\Gamma(2) = \Gamma(1+1) = 1 \Gamma(1) = 1$$

$$\Gamma(3) = \Gamma(2+1) = 2 \Gamma(2) = 2 = 2!$$

$$\Gamma(4) = \Gamma(3+1) = 3 \Gamma(3) = 6 = 3!$$

$$\Gamma(5) = \Gamma(4+1) = 4 \Gamma(4) = 24 = 4!$$

e por indução obtemos $\Gamma(n+1) = n!$ para $n \in \mathbb{N}$.

Vamos verificar agora que $\Gamma(1/2) = \sqrt{\pi}$.

De fato, temos que $\Gamma(1/2)=\int_0^\infty {\rm e}^{-x}\,x^{-1/2}\,dx$. Usando a mudança de variável $x=u^2$, obtemos

$$\Gamma(1/2) = = \int_0^\infty e^{-x} x^{-1/2} dx$$
$$= 2 \int_0^\infty e^{-u^2} du$$
$$= 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$

Com isso e usando (9) obtemos

$$\begin{split} &\Gamma(3/2) = \Gamma(1/2+1) = \frac{1}{2}\Gamma(1/2) = \frac{\sqrt{\pi}}{2}, \\ &\Gamma(5/2) = \Gamma(2+1/2) = \Gamma(3/2+1) = \frac{3}{2}\Gamma(3/2) = \frac{3\sqrt{\pi}}{4}, \\ &\Gamma(7/2) = \Gamma(3+1/2) = \Gamma(5/2+1) = \frac{5}{2}\Gamma(5/2) = \frac{15\sqrt{\pi}}{8}, \\ &\Gamma\left(n+\frac{1}{2}\right) = \frac{1.3....(2n-1)}{2^n}\sqrt{\pi} = \frac{(2n)!}{4^n\,n!}\sqrt{\pi}, \; n \in \mathbb{N}. \end{split}$$

Agora, observe que para x > 0, temos

$$\Gamma'(x) = \int_0^\infty e^{-t} t^{x-1} \ln(t) dt,$$

$$\Gamma''(x) = \int_0^\infty e^{-t} t^{x-1} (\ln(t))^2 dt.$$

Logo, $\Gamma''(x)>0$ para x>0. Portanto, Γ é uma função convexa em $\mathbb{R}_+=\{x\in\mathbb{R}:x>0\}.$

Vamos agora fazer a extensão da função Γ para $x \le 0$.

Para x > 0, usando que $\Gamma(x+1) = x \Gamma(x)$, obtemos

$$\Gamma(x+n) = (x+n-1)(x+n-2)....(x+1) x \Gamma(x),$$

e então podemos escrever

$$\Gamma(x) = \frac{\Gamma(x+n)}{(x+n-1)(x+n-2)...(x+1)x}.$$
(10)

Como $\Gamma(x+n)$ está definida para x+n>0, então (10) prolonga $\Gamma(x)$ na região x>-n, exceto nos pontos x=-k (k=0,1,...,n-1). Usando (10), obtemos para

x > -n

$$\Gamma(x+1) = \frac{\Gamma(x+1+n)}{(x+n)(x+n-1)...(x+1)}$$

$$= \frac{(x+n)\Gamma(x+n)}{(x+n)(x+n-1)...(x+1)}$$

$$= \frac{\Gamma(x+n)}{(x+n-1)...(x+1)}$$

$$= x \Gamma(x).$$

Com isso, podemos calcular a função gama para valores negativos não inteiros. Por exemplo, usando que $\Gamma(x)=\frac{\Gamma(x+1)}{x}$, temos

$$\Gamma(-1/2) = -2\Gamma(1/2) = -2\sqrt{\pi},$$

$$\Gamma(-3/2) = -\frac{2}{3}\Gamma(-3/2+1) = -\frac{2}{3}\Gamma(-1/2) = \frac{4\sqrt{\pi}}{3}.$$

Definição 5.2 Para x > 0 e y > 0, a função Beta de Euler é definida por

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$
 (11)

Se $x \ge 1$ e $y \ge 1$, esta integral é própria (ou uma integral definida), mas se 0 < x < 1 ou 0 < y < 1, a integral é imprópria.

É possível provar que

$$B(x,y) = \frac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}.\tag{12}$$

Exemplo 5.3 Aplicando a mudança de variável $t=u^{1/n}$ ($n\in\mathbb{R}$ e n>0) na integral

$$\int_0^1 \frac{1}{\sqrt{1-t^n}} \, dt,$$

e usando (12), obtemos

$$\int_0^1 \frac{1}{\sqrt{1-t^n}} dt = \int_0^1 \frac{1}{n} \frac{1}{\sqrt{1-u}} u^{1/n-1} du$$

$$= \frac{1}{n} \int_0^1 u^{1/n-1} (1-u)^{-1/2} du$$

$$= \frac{1}{n} B(1/n, 1/2)$$

$$= \frac{1}{n} \frac{\Gamma(1/n) \Gamma(1/2)}{\Gamma(1/n+1/2)}$$

$$= \frac{1}{n} \sqrt{\pi} \frac{\Gamma(1/n)}{\Gamma((n+2)/2n)}.$$

Por exemplo, se n = 2/3, temos

$$\int_0^1 \frac{1}{\sqrt{1 - x^{2/3}}} \, dx = \frac{3}{2} \sqrt{\pi} \, \frac{\Gamma(3/2)}{\Gamma(2)} = \frac{3 \, \pi}{4}.$$

Agora, para n = 1/2, obtemos

$$\int_0^1 \frac{1}{\sqrt{1-\sqrt{x}}} dx = 2\sqrt{\pi} \frac{\Gamma(2)}{\Gamma(5/2)} = 2\sqrt{\pi} \cdot 1 \cdot \frac{4}{3\sqrt{\pi}} = \frac{8}{3}.$$

Exemplo 5.4 Para x>0 e y>0, fazendo a mudança de variável $t=(\sin u)^2$ em (11) obtemos

$$B(x,y) = 2 \int_0^{\pi/2} (\sin u)^{2x-1} (\cos u)^{2y-1} du.$$
 (13)

Com isso, para $x = n + \frac{1}{2}$ ($n \in \mathbb{N}$) e y = 1/2, obtemos (usando (12))

$$\int_0^{\pi/2} (\sin u)^{2n} du = \frac{1}{2} B(n + \frac{1}{2}, \frac{1}{2})$$

$$= \frac{1}{2} \frac{\Gamma(n + \frac{1}{2}) \Gamma(1/2)}{\Gamma(n + 1/2 + 1/2)}$$

$$= \frac{\sqrt{\pi}}{2} \frac{\Gamma(n + \frac{1}{2})}{\Gamma(n + 1)}$$

$$= \frac{1.3.5...(2n - 1)}{2.4.6...(2n)} \frac{\pi}{2}.$$

Por exemplo, (com n = 5), $\int_0^{\pi/2} (\sin(x))^{10} dx = \frac{189}{1536} \pi$.

De forma análoga, obtemos que

$$\int_0^{\pi/2} (\sin x)^{2n+1} dx = \frac{\sqrt{\pi}}{2} \frac{\Gamma(n+1)}{\Gamma(n+\frac{3}{2})} = \frac{2.4.6...(2n)}{1.3.5...(2n+1)}.$$

Também temos, para p e q inteiros não negativos (usando (13))

$$\begin{split} \int_0^{\pi/2} (\cos(\theta))^{2p-1} (\sin(\theta))^{2q-1} d\theta &= \frac{1}{2} B(p,q) \\ &= \frac{1}{2} \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} \\ &= \frac{1}{2} \frac{(p-1)! (q-1)!}{(p+q-1)!}. \end{split}$$

Por exemplo, com p = 5 e q = 6, temos $\int_0^{\pi/2} (\cos(x))^9 (\sin(x))^{11} dx = \frac{1}{2520}$.

6. Sugestão de Atividades

(1) Determine se cada integral imprópria é convergente ou divergente.

(a)
$$\int_0^1 \frac{\ln(x)}{\sqrt{x}} dx$$

$$(b) \int_1^\infty \frac{x+2}{x^2+1} \, dx$$

(c)
$$\int_{1}^{\infty} \frac{\sin(1/x)}{x} dx$$

(d)
$$\int_0^1 \frac{\ln(x)}{1-x^2} dx$$
.

(2) Determine os valores de p para que a integral imprópria seja convergente.

(a)
$$\int_0^{\pi/2} \frac{\operatorname{sen}(x)}{x^p} \, dx$$

$$(b) \int_0^{\pi/2} \frac{\cos(x)}{x^p} \, dx$$

(c)
$$\int_0^\infty x^p e^{-x} dx$$

$$(d) \int_0^{\pi/2} \frac{\operatorname{sen}(x)}{(\operatorname{tg}(x))^p} \, dx$$

(3) Determine os valores de $p,q \in \mathbb{R}$ para que sejam convergentes as seguintes integrais impróprias.

(a)
$$\int_0^1 x^p (1-x)^q dx$$

$$(b) \int_1^\infty \frac{x^p}{(1+x^2)^q} \, dx$$

$$(c) \int_{-1}^{1} \frac{(\cos(\pi x/2))^{q}}{(1-x^{2})^{p}} dx$$

$$(d) \int_{-1}^{1} (1-x)^p (1+x)^q dx$$

Respostas (1) (a) convergente, (b) divergente, (c) absolutamente convergente,

(d) convergente.

(2) (a)
$$p < 2$$
, (b) $p < 1$, (c) $p > -1$, (d) -1

(3) (a) convergente se
$$p, q > -1$$
, (b) convergente se $-1 ,$

(c) convergente se p - q < 1, (d) convergente se p, q < 1.

O Teorema de Dini

Doherty Andrade - E-mail:doherty200@hotmail.com

RESUMO: O teorema de Dini apresenta condições para que uma sequência (f_n) de funções contínuas que converge pontualmente para f contínua, também convirja uniformemente para a mesma f.

Palavras-chave: Teorema de Dini. Convergência pontual. Convergência uniforme. *

Sumário

1	Introdução	30
2	Enunciado	30
3	Exemplos	32

1. Introdução

Para o estudante de Cálculo, a convergência de funções, surge quando estudamos polinomios de Taylor, sequências e séries de funções. Nessa ocasião é muito comum os estudantes utilizarem o que conhecem de convergencia de sequências numéricas para deduzirem resultados, muitas vezes errôneos, sobre convergência de funções. Um dos resultados mais esclarecedores a esse respeito é o Teorema de Dini, esse teorema deixa bem claro que não se pode confundir a convergência pontual com a convergência uniforme de funções.

2. Enunciado

Nesta seção vamos apresentar a demons
rtraçãodo Teorema de Dini. É uma demonstração simples e bastante utilizada, facilmente en
contrada em livros de Cálculo ou introdução à Análise. O estudante pode

^{*} Publicado em 14-12-2017.

ignorar, em uma primeira leitura, os detalhes da demonstração do teorema. Mas deve empenhar-se em entender os diferentes conceitos envolvidos, tais como, convergência pontual e convergência uniforme. Deve também valorizar as hipóteses, sem as quais não se obtém a implicação.

Teorema 2.1 (Dini). Seja $K \subset \mathbb{R}$ um conjunto compacto não vazio e seja $f_n : K \to \mathbb{R}$ uma sequência de funções contínuas que converge pontualmente para a função contínua $f : K \to \mathbb{R}$. Se a sequência (f_n) é monótona, então a sequência (f_n) converge uniformente para f.

Lembramos que uma sequência monótona de funções (f_n) pode ser:

- 1. não-decrescente se $-f_{n+1}(x) \ge f_n(x), \forall x \in K, \forall n \in \mathbb{N};$
- 2. não-crescente se $-f_{n+1}(x) \le f_n(x), \forall x \in K, \forall n \in \mathbb{N}.$

Demonstração: Para fixar as ideias, suponha que a sequência (f_n) seja não-decrescente: $f_{n+1}(x) \geq f_n(x), \forall x \in K, \forall n \in \mathbb{N}$. O caso em que a sequência (f_n) seja não-crescente pode ser tratado de modo análogo.

Como (f_n) é não-decrescente temos que

$$f_n(x) \le f_m(x) \le f(x), \forall x \in K, \forall n, m \in \mathbb{N}, n \le m.$$
 (1)

Como f e as funções f_n são contínuas com domínio compacto K, segue que todas são uniformemente contínuas. Assim, para $\epsilon > 0$ dado temos:

(i) existe $\delta > 0$ tal que

$$x, y \in K, |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.$$

(ii) usando a continuidade uniforme de f_n , para cada $n \in \mathbb{N}$, existe $\delta_n > 0$ tal que

$$x, y \in K, |x - y| < \delta_n \Rightarrow |f_n(x) - f_n(y)| < \epsilon.$$

(iii) como (f_n) converge pontualmente para f, para cada $x \in K$ existe $n(x) \in \mathbb{N}$ tal que

$$n \in \mathbb{N}, n \ge n(x) \Rightarrow |f_n(x) - f(x)| < \epsilon.$$

(iv) Para cada $x \in K$, definimos

$$d_n = \min\{\delta, \delta_{n(x)}\} > 0.$$

(v) Como K é compacto e $(x - \delta_x, x + \delta_x)$, em que $x \in K$, forma uma cobertura aberta de K, e dela podemos extrair uma subcobertura finita. Seja

$$(x_j - \delta_{x_i}, x_j + \delta_{x_i}), j = 1, 2, 3, \dots, k,$$

essa cobertura.

(vi) Defina,

$$n_0 = \max\{n_{x_i}, j = 1, 2, \dots, k\}$$

Segue de (i), (ii) e (iii) que vale a seguinte implicação:

$$x \in K, n \in \mathbb{N}, n \ge n(x), y \in K, |y - x| < \delta_x \Rightarrow |f_n(y) - f(y)| < 3\epsilon.$$

De fato,

$$|f_{n}(y) - f(y)| = f(y) - f_{n}(y)$$

$$\leq f(y) - f_{n(x)}(y)$$

$$= f(y) - f(x) + f(x) - f_{n(x)}(x) + f_{n(x)}(x) - f_{n(x)}(y)$$

$$\leq |f(y) - f(x)| + |f(x) - f_{n(x)}(x)| + |f_{n(x)}(x) - f_{n(x)}(y)|$$

$$< 3\epsilon.$$

Portanto, para $n \ge n_0$ tem-se que dado $y \in K$ existe $j \in \{1, 2, ..., k\}$ tal que $y \in (x_j - \delta_{x_j}, x_j + \delta_{x_j})$; como $n \ge n_0 \ge n(x_j)$, vale a propriedade

$$x \in K, n \in \mathbb{N}, n \ge n(x), y \in K, |y - x| < \delta_x \Rightarrow |f_n(y) - f(y)| < 3\epsilon,$$

com $x=x_j$, obtemos que $|f_n(y)-f(y)|<3\epsilon$. Como $\epsilon>0$ é arbitrário, seque que (f_n) converge uniformemente para f.

3. Exemplos

(a) A sequência de funções contínuas dada por $f_0(x) = 1$, $f_1(x) = \sqrt{x}, \ldots, f_n(x) = \sqrt{x}f_{n-1}(x)$, definida no compacto [0, 1].

Notemos que a sequência de funções (f_n) pode ser dada por $f_n(x) = x^{\frac{2^n-1}{2^n}}$. Como a sequência $a_n = \frac{2^n-1}{2^n} = 1 - \frac{1}{2^n}$ é crescente e $\lim_{n\to\infty} a_n = 1$, segue que $\lim_{n\to\infty} f_n(x) = x = f(x)$. Logo, (f_n) converge pontualmente para f.

Além disso, as funções $f_n(x) = x^{\frac{2^n-1}{2^n}}$ são contínuas e a sequência é decrescente.

Pelo teorema de Dini a sequência (f_n) converge uniformemente para f.

(b) A sequência $f_n(x) = x^n, x \in (0,1)$ é sequência de funções contínuas que decresce pontualmente para a função nula f. Mas a convergência não pode ser uniforme. De fato, se $f_n(x) \to f(x)$, então $g_n(x) = f_n(x) - f(x)$ é sequência contínua que converve pontualmente para zero e teríamos necessariamente que $\sup\{g_n(x), x \in (0,1)\} = 0$. Mas $\sup\{x^n, 0 < x < 1\} = 1$.

Nesse exemplo, uma das hipóteses do Teorema de Dini foi propositalmente ignorada: o domínio K não é compacto.

Referências

1. Avner Friedman, Foundations of Modern Analysis. Holt, Reinehart and Winston, Inc., 1970.

Integral na reta com Álgebra Linear: caso particular

Ânderson da Silva Vieira – E-mail:anderdsvieira@gmail.com Fatec-Carapicuíba e Faculdade Mário Schenberg, Cotia, SP

RESUMO: O objetivo principal desse material é apresentar ao leitor uma maneira de calcular a integral na reta, para um caso particular, usando as definições e resultados que são desenvolvidos em um curso de Álgebra Linear.

Palavras-chave: Integral, Bases, Geradores, Transformação Linear, Operador Inverso. *

Sumário

1	Introdução	34
2	Álgebra Linear: Breves definições e resultados	35
3	Integração com o operador inverso	41
4	Sugestões de atividades	43

1. Introdução

Quando o professor de matemática inicia um conceito em sua aula, é muito comum surgir a pergunta de um de seus alunos: "Onde vamos aplicar esse conceito? Muitas vezes precisamos de tantos pré-requisitos para fazer uma aplicação, mesmo em um caso bem particular, mas a emoção de poder fazê-la é inexplicável.

Se sabemos resolver sistemas lineares, Boldrini (ver [?]) nos apresenta exemplos aplicados em balanceamento de reações químicas e em circuito elétrico. Por outro lado, se sabemos os conceitos de operadores

^{*} Publicado em 14-12-2017.

invertíveis, podemos calcular algumas integrais para um caso particular. O método que descreveremos foi apresentado por David Poole (ver [?]).

Quanto à organização desse material, temos o seguinte: na Seção 2 recordamos um pouco dos assuntos estudados em Álgebra Linear que serão importantes; na Seção 3 teremos a resposta para o objetivo desse material; finalizamos com Seção 4 deixando exercícios para que o leitor aplique a técnica às outras situações.

2. Álgebra Linear: Breves definições e resultados

Nesta seção, os conjuntos U e V serão sempre espaços vetoriais (ver [?]) sobre \mathbb{R} . Apenas apresentaremos as definições que nos serão úteis no desenvolver da técnica.

Iniciaremos com as definições sobre os espaços vetoriais.

Consideremos subconjunto $S = \{u_1, \dots, u_n\} \subset V$. Indicaremos por [S] o seguinte subconjunto de V construído a partir de S:

$$[S] = \{\alpha_1 u_1 + \dots + \alpha_n u_n | \alpha_1, \dots, \alpha_n \in \mathbb{R}\}.$$

Observação 2.1. [S] é subespaço vetorial de V.

Definição 2.1. O subespaço [S] é chamado subespaço vetorial gerado por S.

Cada elemento de [S] é chamado combinação linear de u_1, \dots, u_n .

Definição 2.2. Seja $S = \{u_1, \dots, u_n\} \subset V$. Consideremos a equação

$$\alpha_1 u_1 + \dots + \alpha_n u_n = 0. \tag{1}$$

O conjunto S diz-se linearmente independente, caso a equação (1), admite apenas a solução trivial, $\alpha_1 = \cdots = \alpha_n = 0$.

Se existem soluções $\alpha_i \neq 0$, diz-se que o conjunto S é linearmente dependente.

Definição 2.3. Um conjunto $S = \{u_1, \dots, u_n\} \subset V$ é uma base do V se

(I) S é linearmente independente;

(II)
$$V = [S]$$
.

Definição 2.4. Se V possui uma base com n vetores, então V tem dimensão n e denotamos $\dim V = n$.

Agora, passaremos a rever as definições com transformações lineares.

Definição 2.5. Uma aplicação $F: U \to V$ é chamada **transformação linear** de U em V se, e somente se,

(a)
$$F(u_1 + u_2) = F(u_1) + F(u_2), \forall u_1, u_2 \in V$$
;

(b)
$$F(\alpha u) = \alpha F(u), \forall \alpha \in \mathbb{R} \ e \ \forall u \in U.$$

Quando U=V, uma transformação linear $F:U\to V$ é chamada de ${\it operador\ linear}.$

Para aplicarmos os resultados de Álgebra Linear, precisamos ter uma aplicação que é uma transformação linear. Sendo assim, a seguir, veremos uma proposição que nos garantirá que o operador diferencial $D: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ definido por

$$D(p(t)) = p'(t),$$

para todo polinômio $p(t) \in P_n(\mathbb{R})$, é um operador linear.

Proposição 2.1. Mostre que D é um operador linear.

Demonstração. Sejam $p(t), q(t) \in P_n(\mathbb{R})$ e $\alpha \in \mathbb{R}$. Desta forma,

$$D(p(t) + q(t)) = (p(t) + q(t))'$$

$$= p'(t) + q'(t)$$

$$= D(p(t)) + D(q(t));$$

além disso,

$$D(\alpha p(t)) = (\alpha p(t))'$$

$$= \alpha p'(t)$$

$$= \alpha D(p(t)).$$

Portanto, D é um operador linear.

Indicaremos por $\mathcal{L}(U,V)$ o conjunto das transformações lineares de U em V. Se U=V, o conjunto dos operadores lineares de U será denotado por $\mathcal{L}(U)$.

Como vamos precisar da matriz associada à transformação linear, apresentaremos os passos de como obtê-la.

Suponhamos que $\beta = \{u_1, u_2, \cdots, u_n\}$ e $\beta' = \{v_1, v_2, \cdots, v_m\}$ sejam bases de U e V, respectivamente. Dado $u \in U$, podemos escrevê-lo como

$$u = x_1 u_1 + x_2 u_2 + \dots + x_n u_n \Rightarrow [u]_{\beta} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 (2)

e como $T(u) \in V$, então

$$T(u) = y_1 v_1 + y_2 v_2 + \dots + y_m v_m \Rightarrow [T(u)]_{\beta'} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$
 (3)

Como $T(u_j) \in W$, $1 \le j \le n$, então

$$T(u_j) = \alpha_{1j}v_1 + \alpha_{2j}v_2 + \dots + \alpha_{mj}v_m \Rightarrow [T(u_j)]_{\beta'} = \begin{bmatrix} \alpha_{1j} \\ \alpha_{2j} \\ \vdots \\ \alpha_{mj} \end{bmatrix}.$$

Então, a partir de algumas contas obtemos em forma matricial

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

desta forma, se escrevemos

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix}$$
$$= [[T(u_1)]_{\beta'} [T(u_2)]_{\beta'} \cdots [T(u_n)]_{\beta'}]$$

temos

$$[T(u)]_{\beta'} = [T]_{\beta'}^{\beta}[v]_{\beta}. \tag{4}$$

A matriz $[T]_{\beta'}^{\beta}$ é chamada matriz de T em relação às β e β' . Note que a ordem da matriz $[T]_{\beta'}^{\beta}$ é $\dim U \times \dim V$.

Exemplo 2.1. Seja $D: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ a transformação D(p(t)) = p'(t). Sejam $\beta = \{1, x, x^2, x^3\}$ e $\beta' = \{1, x, x^2\}$ sejam bases de $P_3(\mathbb{R})$ e $P_2(\mathbb{R})$, respectivamente.

(a) Encontre a matriz $[D]^{\beta}_{\beta'}$.

Note que

- $D(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2$;
- $D(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2$;
- $D(x^2) = 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2;$
- $D(x^3) = 3x^2 = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2;$

ou seja,

$$[D]^{\beta}_{\beta'} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

(b) Usando o item (a), calcule $D(5-x-2x^3)$ e $D(a+bx+cx^2+dx^3)$. Neste item, queremos aplicar a equação (4). Inicialmente, temos que

$$[5 - x - 2x^3]_{\beta} = \begin{bmatrix} 5 \\ -1 \\ 0 \\ -2 \end{bmatrix} e [a + bx + cx^2 + dx^3]_{\beta} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}.$$

Logo,

$$[D(5-x-2x^3)]_{\beta'} = [D]_{\beta'}^{\beta}[(5-x-2x^3]_{\beta}]_{\beta'}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -6 \end{bmatrix}$$

e

$$\begin{split} [D(a+bx+cx^2+dx^3)]_{\beta'} &=& [D]_{\beta'}^{\beta}[a+bx+cx^2+dx^3]_{\beta} \\ &=& \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} b \\ 2c \\ 3d \end{bmatrix}. \end{split}$$

Portanto,
$$D(5-x-2x^3) = -1 \cdot 1 + 0 \cdot x + (-6) \cdot x^2 = -1 - 6x^2 e$$

 $D(a+bx+cx^2+dx^3) = b \cdot 1 + 2c \cdot x + 3d \cdot x^2 = b + 2cx + 3dx^2$.

Observação 2.2. O exemplo anterior, tem como objetivo calcular a derivada de um polinômio usando matriz de uma transformação linear. Claramente, se utilizamos as regras de derivação obtemos o desejado.

O próximo exemplo terá como proposta: trabalhar com um operador linear.

Exemplo 2.2. Seja \mathscr{D} o espaço vetorial de todas as funções deriváveis. Considere o subespaço W de \mathscr{D} dado por $W = [e^{3x}, xe^{3x}, x^2e^{3x}]$.

(a) Mostre que $\beta = \{e^{3x}, xe^{3x}, x^2e^{3x}\}$ é linearmente independente. Sejam $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tais que

$$\alpha_1 e^{3x} + \alpha_2 x e^{3x} \alpha_3 x^2 e^{3x} = 0, \quad \forall x \in \mathbb{R}.$$

Como e^{3x} nunca se anula para qualquer valor real para x, então

$$\alpha_1 + \alpha_2 x + \alpha_3 x^2 = 0, \quad \forall x \in \mathbb{R}.$$

Sabendo que a equação acima vale para todo número real x; em particular, vale para os seguintes valores de x: 0,-1,1. Sendo assim, teremos um sistema homogêneo de três equações e três incógnitas que apresenta a única solução $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Portanto, β é linearmente independente.

(b) Mostre que o operador diferencial D(p(x)) = p'(x) aplica W em W.

Seja $p(x) \in W$, sendo assim $p(x) = ae^{3x} + bxe^{3x} + cx^2e^{3x}$. Então,

$$D(p(x)) = (ae^{3x} + bxe^{3x} + cx^2e^{3x})'$$

= $(3a+b)e^{3x} + (3b+2c)xe^{3x} + (3c)x^2e^{3x}$.

Como D(p(x)) é uma combinação linear dos elementos de que geram W, então $D(p(x)) \in W$.

(c) Encontre $[D]_{\beta}$.

Do item (a), já temos que $D(ae^{3x} + bxe^{3x} + cx^2e^{3x}) = (3a+b)e^{3x} + (3b+2c)xe^{3x} + (3c)x^2e^{3x}$, logo

$$[D(e^{3x})]_{\beta} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}, [D(xe^{3x})]_{\beta} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} e [D(x^2e^{3x})]_{\beta} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix};$$

isto é,

$$[D]^{\beta}_{\beta} = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

(d) Calcule $D(5e^{3x} + 2xe^{3x} - x^2e^{ex})$ indiretamente usando (a).

Note que

$$[D(5e^{3x} + 2xe^{3x} - x^2e^{ex})]_{\beta} = [D]_{\beta}^{\beta}[5e^{3x} + 2xe^{3x} - x^2e^{ex}]_{\beta}$$
$$= \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ -1 \\ d \end{bmatrix} = \begin{bmatrix} 17 \\ 4 \\ -3 \end{bmatrix};$$

então
$$D(5e^{3x} + 2xe^{3x} - x^2e^{ex}) = 17e^{3x} + 4xe^{3x} - 3x^2e^{ex}$$
.

Agora recordaremos algumas propriedades dos operadores.

(I) Se T é invertível e T^{-1} é seu inverso, então

$$T \circ T^{-1} = T^{-1} \circ T = I.$$

- (II) T é invertível se, e somente se, $ker(T) = \{0\}$
- (III) Se T é invertível e β é uma base de V, então $T^{-1}:V\to V$ é linear e

$$\left[T^{-1}\right]_{\beta} = \left[T\right]_{\beta}^{-1}$$

Note que T é invertível se, e somente se, $\det[T]_{\beta} \neq 0$.

3. Integração com o operador inverso

Quando damos início ao estudo de integrais, o começo do desenvolvimento da teoria é pensar em primitivas/antiderivadas e percebemos que a integral é "o caminho inverso" da derivada. Sendo assim, se temos que o operador linear diferencial D(p(x)) = p'(x) é invertível, então podemos dizer que

$$D^{-1}(p'(x)) = \int p'(x) dx = p(x).$$

Evidentemente, sabemos que deveria aparece uma constante; por outro lado, como estamos com operadores, sabemos que o operador linear (transformação linear) associa o vetor nulo ao vetor nulo. Por isso neste caso, a constante é nula.

A seguir, veremos como calcular a integral utilizando o operador linear inverso.

Exemplo 3.1. Seja \mathscr{D} o espaço vetorial de todas as funções deriváveis. Considere o subespaço W de \mathscr{D} dado por $W = [e^{3x}, xe^{3x}, x^2e^{3x}]$. Sejam operador diferencial T(p(x)) = p'(x) em W e $\beta = \{e^{3x}, xe^{3x}, x^2e^{3x}\}$ a base de W.

(a) Mostre que D é invertível.

Vimos no Exemplo 2.2 que

$$[D]^{\beta}_{\beta} = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

Observe que $\det\left([D]_{\beta}^{\beta}\right)=27\neq0,\ ent\tilde{ao}\ D\ \acute{e}\ um\ operador\ invertível\ e$

$$[D^{-1}]^{\beta}_{\beta} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{2}{27} \\ 0 & \frac{1}{3} & -\frac{2}{9} \\ 0 & 0 & \frac{1}{3} \end{bmatrix}.$$

(b) Calcule $\int x^2 e^{3x} dx$.

Veja que

$$[x^2e^{3x}]_{\beta} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

Então,

$$\left[\int x^2 e^{3x} \, dx \right]_{\beta} = \left[D^{-1} (x^2 e^{3x}) \right]_{\beta} = \left[D^{-1} \right]_{\beta}^{\beta} [x^2 e^{3x}]_{\beta} \\
= \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{2}{27} \\ 0 & \frac{1}{3} & -\frac{2}{9} \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{27} \\ -\frac{2}{9} \\ \frac{1}{3} \end{bmatrix};$$

portanto,
$$\int x^2 e^{3x} dx = \frac{2}{27} e^{3x} - \frac{2}{9} x e^{3x} + \frac{1}{3} x^2 e^{3x}.$$

Observação 3.1. Veremos como é calculada a integral $\int x^2 e^{3x} dx$ usando as ferramentas do Cálculo. Usando a integração por partes, sejam

$$\begin{array}{l} u=x^2\Longrightarrow du=2x\,dx\\ dv=e^{3x}\,dx\Longrightarrow v=\frac{e^{3x}}{3}. \end{array}$$

Então,

$$\int x^2 e^{3x} \, dx = x^2 \frac{e^{3x}}{3} - \int 2x \frac{e^{3x}}{3} \, dx = x^2 \frac{e^{3x}}{3} - \frac{2}{3} \int x e^{3x} \, dx.$$

Para calcular $\int xe^{3x} dx$, mais uma vez vamos utilizar a integração por partes. Sejam

$$u = x \Longrightarrow du = dx$$

 $dv = e^{3x} dx \Longrightarrow v = \frac{e^{3x}}{3}.$

Logo,

$$\int xe^{3x} dx = x\frac{e^{3x}}{3} - \int \frac{e^{3x}}{3} dx = x\frac{e^{3x}}{3} - \frac{e^{3x}}{9} + c_1,$$

onde c_1 é uma constante. Desta forma,

$$\int x^2 e^{3x} dx = x^2 \frac{e^{3x}}{3} - \frac{2}{3} \int x e^{3x} dx$$

$$= \frac{1}{3} x^2 e^{3x} - \frac{2}{3} \left[x \frac{e^{3x}}{3} - \frac{e^{3x}}{9} + c_1 \right]$$

$$= \frac{1}{3} x^2 e^{3x} - \frac{2}{9} x e^{3x} + \frac{2}{27} e^{3x} + c$$

$$= \frac{2}{27} e^{3x} - \frac{2}{9} x e^{3x} + \frac{1}{3} x^2 e^{3x} + c.$$

4. Sugestões de atividades

- 1. Seja \mathscr{D} o espaço vetorial de todas as funções deriváveis. Considere o subespaço W de \mathscr{D} dado por $W = [\sin(x), \cos(x)]$. Sejam operador diferencial T(p(x)) = p'(x) em W e $\beta = \{\sin(x), \cos(x)\}$ a base de W.
 - (a) Mostre que $\beta = \{\sin(x), \cos(x)\}$ é linearmente independente.
 - (b) Mostre que o operador diferencial D(p(x)) = p'(x) aplica W em W.
 - (c) Encontre $[D]_{\beta}$.
 - (d) Calcule $D(3\sin(x) 5\cos(x))$ indiretamente usando (a).

- (e) Mostre que D é invertível e determine $[D^{-1}]^{\beta}_{\beta}$.
- (f) Calcule $\int \sin(x) 3\cos(x) dx$.
- 2. Seja \mathcal{D} o espaço vetorial de todas as funções deriváveis. Considere o subespaço W de \mathcal{D} dado por $W=[e^{2x},e^{-2x}]$. Sejam operador diferencial T(p(x))=p'(x) em W e $\beta=\{e^{2x},e^{-2x}\}$ a base de W.
 - (a) Mostre que $\beta = \{e^{2x}, e^{-2x}\}$ é linearmente independente.
 - (b) Mostre que o operador diferencial D(p(x)) = p'(x) aplica W em W.
 - (c) Encontre $[D]_{\beta}$.
 - (d) Calcule $D(e^{2x} 3e^{-2x})$ indiretamente usando (a).
 - (e) Mostre que D é invertível e determine $[D^{-1}]^{\beta}_{\beta}$.
 - (f) Calcule $\int 5e^{-2x} dx$.
- 3. Seja \mathcal{D} o espaço vetorial de todas as funções deriváveis. Considere o subespaço W de \mathcal{D} dado por $W = [e^{2x}, e^{2x} \sin(x), e^{2x} \cos(x)]$. Sejam operador diferencial T(p(x)) = p'(x) em W e

$$\beta = \{e^{2x}, e^{2x}\sin(x), e^{2x}\cos(x)\}\$$

a base de W.

- (a) Mostre que $\beta = \{e^{2x}, e^{2x}\sin(x), e^{2x}\cos(x)\}$ é linearmente independente.
- (b) Mostre que o operador diferencial D(p(x)) = p'(x) aplica W em W.
- (c) Encontre $[D]_{\beta}$.
- (d) Calcule $D(3e^{2x}+2e^{2x}\sin(x)-e^{2x}\cos(x))$ indiretamente usando (a).
- (e) Mostre que D é invertível e determine $[D^{-1}]^{\beta}_{\beta}$.
- (f) Calcule $\int -2e^{2x}\sin(x) + e^{2x}\cos(x) dx.$

4. Seja \mathcal{D} o espaço vetorial de todas as funções deriváveis. Considere o subespaço W de \mathcal{D} dado por $W = [\sin(x), \cos(x), x \sin(x), x \cos(x)]$. Sejam operador diferencial T(p(x)) = p'(x) em W e

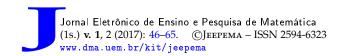
$$\beta = \{\sin(x), \cos(x), x\sin(x), x\cos(x)\}\$$

a base de W.

- (a) Mostre que $\beta = \{\sin(x), \cos(x), x\sin(x), x\cos(x)\}$ é linearmente independente.
- (b) Mostre que o operador diferencial D(p(x)) = p'(x) aplica W em W.
- (c) Encontre $[D]_{\beta}$.
- (d) Calcule $D(\cos(x) + 2x\cos(x))$ indiretamente usando (a).
- (e) Mostre que D é invertível e determine $[D^{-1}]^{\beta}_{\beta}$.
- (f) Calcule $\int x \sin(x) + x \cos(x) dx$.

Referências

- 1. Jose Luiz Boldrini. Álgebra linear. HARBRA, 1986.
- 2. David Poole. Álgebra Linear. Cengage Learning, São Paulo, 2014.



Construção da definição geométrica de logaritmos com o uso do GeoGebra

Luciano Xavier de Azevedo e Luciene Parron Gimenes Arantes(DMA-UEM)

RESUMO: O objetivo deste trabalho é apresentar uma sequência didática significativa para o ensino de logaritmos aliada ao uso do GeoGebra 4.2, favorecendo a formação da ideia geométrica de logaritmo. Os logaritmos tiveram seu apogeu quando revelou-se um método que permitisse efetuar multiplicações, divisões, potenciações e extrações de raízes com certa presteza, mas hoje, com o uso das calculadoras, eles perderam esta utilidade. O desenvolvimento da matemática e da ciência, de modo geral, têm nos revelado a existência de relações estreitas entre os diversos fenômenos químicos, físicos, biológicos, econômicos e os logaritmos. Para mais detalhes, veja nossa referência básica [1].

Palavras-chave: Logaritmo. Geogebra. *

Sumário

1	O surgimento dos logaritmos	46
2	Definição de logaritmo	49
3	Definição geométrica de logaritmo	51
	* Publicado em 14-12-2017.	

4 Logaritmo natural

61

1. O surgimento dos logaritmos

Hoje, com os recursos tecnológicos que temos, nos parece estranho imaginar que realizar operações de multiplicação, divisão, potenciação e radiciação tenha sido algo extremamente difícil. Esse avanço ocorreu no final do século XVI, na Europa, quando o desenvolvimento da astronomia e da navegação exigiram cálculos aritméticos muito complexos para os padrões da época. Naquele período desenvolver um método que oferecesse mais agilidade nessas operações era essencial. O avanço da Matemática se deu principalmente em função do crescimento político, econômico e social da época. Vários estudiosos se empenharam em facilitar esses cálculos, e com resultados satisfatórios, e se destacaram alguns deles, John Napier(1550 - 1617) e Jost Burgi (1552 - 1632) que, independentemente, publicaram tabelas que ficaram conhecidas como tábuas de logaritmos.

John Napier era um rico lorde escocês. Era teólogo e escreveu um livro para provar que o papa de sua época era o Anti-Cristo, baseado no Apocalipse de São João. Ele estudava matemática por lazer e dedicou anos as suas tábuas de logaritmos e em 1614 sentiuse encorajado a publicá-las, intitulando-as de "Mirifi Logarithmorum Canonis Descriptio". A palavra *logaritmo* foi inventada por Napier a partir das palavras gregas *logos* que significa razão e *aritmos* significa número, mas o símbolo log, abreviação de *logarithm*, é atribuída ao astrônomo Kepler.

O método de Napier se baseou na associação dos termos

da progressão geométrica, a^1 , a^2 , a^3 , a^4 , ..., a^n , ..., aos termos da progressão aritmética 1, 2, 3, 4, ..., n, ...

Henry Briggs (1561 - 1631), era professor de matemática e tomou conhecimento das tábuas de logaritmos de Napier. Henry em visita a Napier, no castelo de Merchiston, em Edinburgo na Escócia, discutiram sobre a utilidade de se construir uma tábua de base 10. Essa nova tábua foi publicada por Briggs após a morte de Napier. Uma tábua de logaritmos consiste, essencialmente, de duas colunas, onde cada número da coluna da esquerda corresponde a um número a direita, na mesma linha, que foi denominado seu logaritmo. È interessante que com essa tábua podemos multiplicar dois números utilizando-se apenas da soma de outros dois. Basta somarmos seus logaritmos e, com o resultado, procurarmos na coluna da esquerda o valor lá indicado, esse é o valor procurado. A construção inicial da possibilidade de se fazer reduções de uma multiplicação em uma adição ocorreu mediante a comparação dos termos de uma progressão aritmética com os termos de uma progressão geométrica. Observemos, por exemplo, na tabela abaixo, uma progressão geométrica de razão 2 e uma progressão aritmética de razão 2.

2	4	8	16	32	64	128	256	512	1024
1	2	3	4	5	6	7	8	9	10

Para obtermos o resultado da multiplicação de 8 por 64, basta somarmos 3 e 6, correspondentes a eles na progressão aritmética, então teremos 512 que corresponde a 9. Neste caso, o fato desta tábua permitir calcular, somente, produtos da forma 2^n , com n inteiro positivo, a torna insuficiente para muitos cálculos. Mesmo

que troquemos a base 2 por outra, com número inteiro positivo arbritário, ainda seria insuficiente.

2. Definição de logaritmo

Definição 2.1. Dado um número real a > 0 e $a \ne 1$ chamamos logaritmo de um número b > 0 na base a, o número y tal que

$$a^y = b$$
.

O número a é chamado de base do logaritmo, b é o logaritmando e y o logaritmo. Escrevemos,

$$y = \log_a b$$
.

A seguir, apontamos as propriedades operatórias de logaritmos, assumindo que a,b,c>0 e $a\neq 1$. A primeira propriedade é conhecida como propriedade fundamental dos logaritmos.

Teorema 2.2. Sejam a, b, c números reais positivos e $a \neq 1$. Então, as seguintes propriedades valem:

$$(P_1) \log_a(b.c) = \log_a b + \log_a c;$$

$$(P_2) \log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c;$$

$$(P_3) \log_a(b^n) = n \log_a b.$$

Demonstração: Demonstraremos a propriedade (P_1) . Sejam $\log_a b = x$ e $\log_a c = y$. Então, $a^x = b$ e $a^y = c$. Assim, $bc = a^x \cdot a^y = a^{x+y}$. Logo, $\log_a b.c = \log_a a^{x+y} = x + y$, como queríamos demonstrar. De forma análoga, mostra-se as demais propriedades.

Exemplo 2.3. Sejam x, y e z números reais positivos cujos logaritmos numa dada base k são números primos positivos satisfazendo

$$\log_k(x.y) = 49$$
 e $\log_k\left(\frac{x}{z}\right) = 44$.

Então, $\log_k(xyz)$ é divisível por 13.

Pela propriedade (P_1) do Teorema 2.2, temos

$$\log_k x + \log_k y = 49.$$

Então, existem duas possibilidades para essa soma. Vejamos a seguir.

Primeiro caso: $\log_k x = 2$ e $\log_k y = 47$. Isto se deve ao fato de que se $\log_k y$ fosse um número primo ímpar e diferente de 47, então $\log_k x$ seria par diferente de 2 e não seria primo.

Segundo caso: $\log_k x = 47$ e $\log_k y = 2$. Basta trocar os papéis de x e y do primeiro caso.

Agora, usando (P_2) , segue que $\log_k x - \log_k z = 44$, ou seja, $\log_k x = \log_k z + 44$, o que exclui a possibilidade de $\log_k x = 2$. Logo $\log_k x = 47$, $\log_k y = 2$ e $\log_k z = 3$. Concluímos, pela propriedade (P_1) , que $\log_k (xyz) = \log_k x + \log_k y + \log_k z = 47 + 2 + 3 = 52$ que por sua vez é um múltiplo de 13.

Agora, definimos o logaritmo como uma função real. Para tanto, denotamos por \mathbb{R}_+ o intervalo $(0, +\infty)$.

Definição 2.4. Um sistema de logaritmos ou função logarítmica é uma função $L: \mathbb{R}_+ \to \mathbb{R}$ tal que

(a) L é crescente, ou seja, se x < y, então L(x) < L(y);

(b) $L(x \cdot y) = L(x) + L(y)$, para quaisquer x e y reais positivos.

Em geral, define-se logaritmo, como a função $L: \mathbb{R}_+ \to \mathbb{R}$ tal que L(x)=y se, e somente se, $a^y=x$. Assim, chamamos de base de um sistema de logaritmos L, ao número a tal que L(a)=1. Esta definição tem alguns inconvenientes.

- (√) A definição de função logarítmica não permite apresentar, espontaneamente, o número e como uma base especial que se distingue naturalmente das demais, e aparece artificialmente na definição tradicional. Os logaritmos de base e surgem naturalmente com a definição geométrica.
- (\checkmark) Existe a dificuldade de se estabelecer certas desigualdades fundamentais, por exemplo, L(1+x) < x (válida para logaritmos de base e).

3. Definição geométrica de logaritmo

A definição geométrica de logaritmo depende apenas do conceito de área de uma figura plana. Em 1647, isto não era tão simples assim. Nessa época a igreja permitiu que a obra do padre jesuíta Gregory Saint Vicent (1584 — 1667), que já havia sido completada muitos anos antes, fosse publicada. Ele foi o primeiro a reconhecer a estreita relação entre a área de uma faixa de hiperbóle e os logaritmos, embora ele não tenha concretizado essa identificação. Um pouco depois, em 1660, Isaac Newton também reconheceu essa relação. Suas observações, segundo [2], mostraram que a concepção geométrica de uma função logarítmica é muito antiga.

Iremos definir o que chamamos *logaritmos naturais*. Inicialmente, faremos referência a respeito da área de uma faixa de hipérbole.

Consideremos a função $f(x)=\frac{1}{x}$, com x>0, indicamos por $\mathbb H$ a parte do gráfico de f que associa a cada número de seu domínio o número $\frac{1}{x}$. Então, $\mathbb H$ é o subconjunto do plano no qual seus elementos são os pontos da forma $\left(x,\frac{1}{x}\right)$, x>0. Simbolicamente,

$$\mathbb{H} = \left\{ (x, y); x > 0 \Leftrightarrow y = \frac{1}{x} \right\}.$$

Graficamente, \mathbb{H} está no primeiro quadrante e xy=1 representa um ramo, a parte positiva da hipérbole. Veja Figura 1.

Sejam $a,b \in \mathbb{R}_+$. Representamos por \mathbb{H}_a^b a região do plano limitada pelas retas verticais x=a e x=b e pela hipérbole é $y=\frac{1}{x}$. Portanto, a faixa \mathbb{H}_a^b é o conjunto de todos os pontos (x,y) do plano que satisfazem as desigualdades $a \le x \le b$ e $0 \le y \le \frac{1}{x}$.

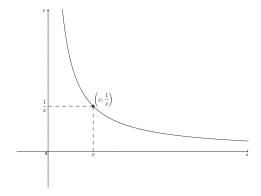


Figura 1:

Para que possamos definir a noção geométrica de logaritmo, precisamos obter a área da faixa \mathbb{H}^b_a , a qual denotamos por $A\left(\mathbb{H}^b_a\right)$. Para tanto, usaremos aproximações por retângulos inferiores e trapézios inscritos. No primeiro método, para um número finito de intervalos justapostos, decompomos o intervalo [a,b]. Então, nessa decomposição, temos n subintervalos na forma $[a_i,a_{i+1}]$, com $a_i < a_{i+1}$. Construímos retângulos com altura $f\left(a_{i+1}\right) = 1/a_{i+1}$. Os vértices desses retângulos tocarão a hipérbole nos pontos com coordenadas $(a_{i+1},1/a_{i+1})$. Por conveniência, chamamos cada um desses retângulos como inscritos na faixa \mathbb{H}^b_a e terá área A_R , ainda, a junção de tais retângulos irá constituir o que indicaremos polígono retangular inscrito na faixa \mathbb{H}^b_a . A soma das áreas desses retângulos nos fornece uma aproximação por falta, para a área da faixa \mathbb{H}^b_a , representada na Figura 2.

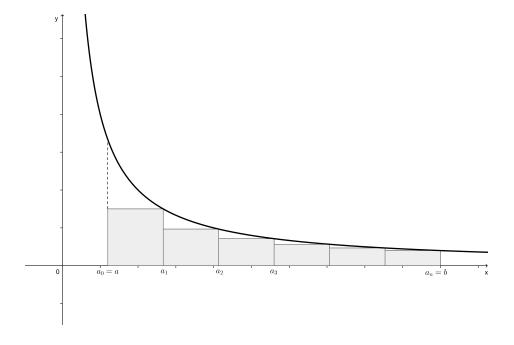


Figura 2:

Exemplo 3.1. Vamos obter a área da faixa \mathbb{H}_1^4 usando o processo de aproximações por retângulos inferiores. Denotamos esse valor por $A(\mathbb{H}_1^4)$.

Façamos a decomposição do intervalo [1,4] em subintervalos de mesma medida através das retas $x=\frac{3}{2}, x=2, x=\frac{5}{2}, x=3$ e $x=\frac{7}{2}$. Assim, obtemos um polígono retangular cuja área é obtida pela soma das áreas dos retângulos. Assim,

$$\sum A_R = \frac{12}{23} + \frac{11}{22} + \frac{12}{25} + \frac{11}{23} + \frac{12}{27} + \frac{11}{24} = \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} = 1,219.$$

Pelo fato dos lados superiores dos retângulos apresentados na Figura 3 ficarem abaixo do gráfico da hipérbole, podemos concluir

que

$$\sum A_R = 1,219 < A(\mathbb{H}_1^4).$$

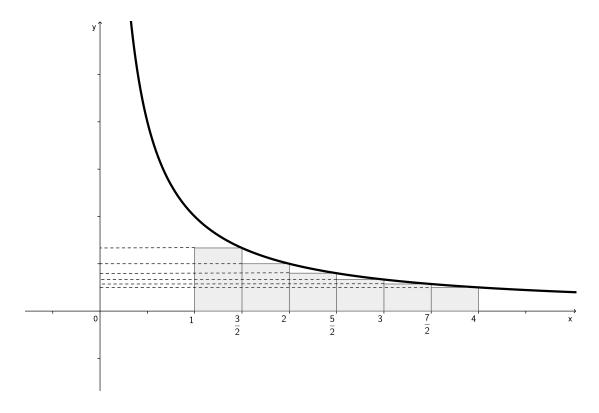


Figura 3: Área de \mathbb{H}_1^4 por falta.

Usando o GeoGebra versão 4.2, podemos comprovar tais cálculos. A seguir, detalhamos os passos utilizados por esse software.

Consideremos a função $y=\frac{1}{x}$ definida em um intervalo (0,k], com $k \ge 4$. Aqui por questão de uma boa representação gráfica, usaremos o intervalo (0,6]. Para tal procedemos da seguinte

forma.

Digitamos na caixa de entrada função e, então, irá aparecer

Função[<Função>, <Valor de x Inicial>,<Valor de x Final>],

então redigitamos Função [1/x,0,6] e damos um *enter*. Então, aparecerá a parte da hipérbole. Agora digitamos, na caixa de entrada, SomaDeRiemannInferior, aparecerá SomaDeRiemannInferior[<Função>,<Valor de x Inicial>,<Valor de x Final>,<Número de Retângulos>], redigitamos SomaDeRiemannInferior[f,1,4,6] e, novamente, damos um *enter*. Na parte superior do lado esquerdo, aparecerá o valor da soma das áreas desses seis retângulos. Comparamos, com três casas decimais o resultado obtido anteriormente e esse. Veja Figura 4.

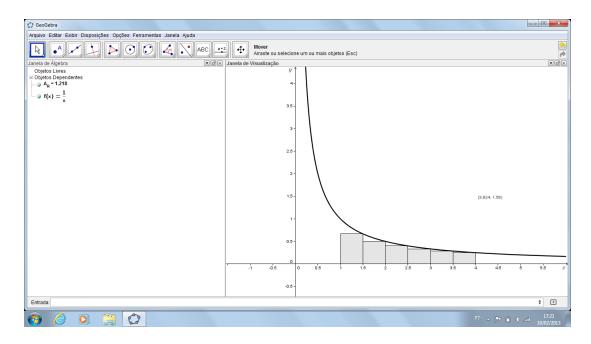


Figura 4: Área de \mathbb{H}_1^4 usando o Geo Gebra.

Agora, indicamos o segundo método de aproximação para o cálculo da área da faixa \mathbb{H}_a^b , o método de aproximação por trapézios inscritos na faixa da hipérbole.

Consideremos os trapézios de altura $a_{i+1}-a_i$ e bases medindo $f(a_{i+1})=\frac{1}{a_{i+1}}$ e $f(a_i)=\frac{1}{a_i}$. Vemos que a área de cada um desses trapézios A_T é calculada por $A_T=\frac{1}{2}\left(\frac{1}{a_{i+1}}+\frac{1}{a_i}\right).(a_{i+1}-a_i)$. Assim, $A_T=\frac{1}{2}.\left(\frac{a_{i+1}}{a_i}-\frac{a_i}{a_{i+1}}\right)$.

Esses trapézios têm vértices na hipérbole $f(x) = \frac{1}{x}$. Como essa hipérbole tem concavidade para cima, temos que esses trapé-

zios são secantes a ela, pois existem pontos acima de f que estão contidos nos trapézios e ainda, dois de seus vértices fazem parte da hipérbole. A reunião desses trapézios formam um polígono tapezoidal cuja soma da área de todos esses trapézios gera uma aproximação por *excesso* da faixa \mathbb{H}^b_a . Então,

$$\sum A_T > A\left(\mathbb{H}_a^b\right).$$

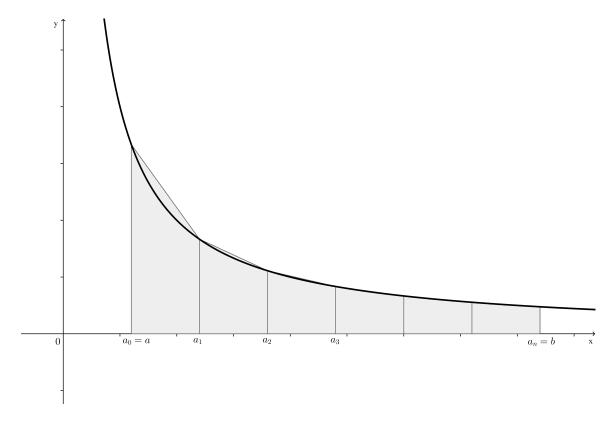


Figura 5: Área de \mathbb{H}_a^b por excesso.

É interessante usarmos as aproximações obtidas pelos tra-

pézios, já que os lados dos trapézios se aproximam mais da hipérbole H do que as bases superiores dos retângulos inscritos.

Exemplo 3.2. Consideremos a faixa \mathbb{H}_1^4 . Vamos obter o valor da área da faixa \mathbb{H}_1^4 por excesso utilizando o GeoGebra.

Façamos a decomposição do intevalo [1,4], no eixo x, através das retas $x=\frac{3}{2}$, x=2, $x=\frac{5}{2}$, x=3 e $x=\frac{7}{2}$, obtemos seis trapézios que se aproximam da área da faixa \mathbb{H}_1^4 .

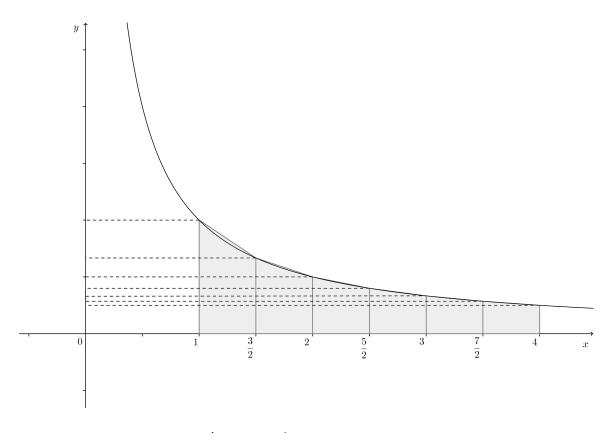


Figura 6: Área de \mathbb{H}_1^4 por excesso.

Observemos que a base dos trapézios estão sobre as retas $x=1, x=\frac{3}{2}, x=2, x=\frac{5}{2}, x=3, x=\frac{7}{2}$ e x=4. Desta forma, obtemos

$$\sum A_T = \frac{1}{4} \cdot \left(1 + \frac{2}{3}\right) + \frac{1}{4} \cdot \left(\frac{2}{3} + \frac{1}{2}\right) + \frac{1}{4} \cdot \left(\frac{1}{2} + \frac{2}{5}\right) + \frac{1}{4} \cdot \left(\frac{2}{5} + \frac{1}{3}\right) + \frac{1}{4} \cdot \left(\frac{1}{3} + \frac{2}{7}\right) + \frac{1}{4} \cdot \left(\frac{2}{7} + \frac{1}{4}\right) = 1,405.$$

Logo,

$$\sum A_T < A\left(\mathbb{H}_1^4\right)$$
.

Pelos cálculos aqui realizados e pelo Exemplo 3.1, concluímos que

$$\sum A_R < A\left(\mathbb{H}_1^4\right) < \sum A_T$$

ou seja, 1,219 $< A(\mathbb{H}_1^4) < 1,405$.

Com o uso do GeoGebra, podemos verificar o que acabamos de fazer. Para isto, sigam as seguintes instruções. Construa a função $y=\frac{1}{x}$ em um intervalo (0,k], com $k\geq 4$, como já fizemos, iremos usar o intervalo (0,6]. Agora, digite na caixa de entrada SomaTrapezoidal e, então, irá aparecer

SomaTrapezoidal[<Função>,<Valor de *x* Inicial>,<Valor de *x* Final>,<Número de Trapézios>],

então redigite SomaTrapezoidal $\left[\frac{1}{x},0,4,6\right]$ e dê um *enter*. Na parte superior do lado esquerdo da tela do GeoGebra irá aparecer o resultado da soma das áreas dos seis trapézios. Comparemos, com

três casas decimais, o resultado obtido anteriormente a esse, através da Figura 7.

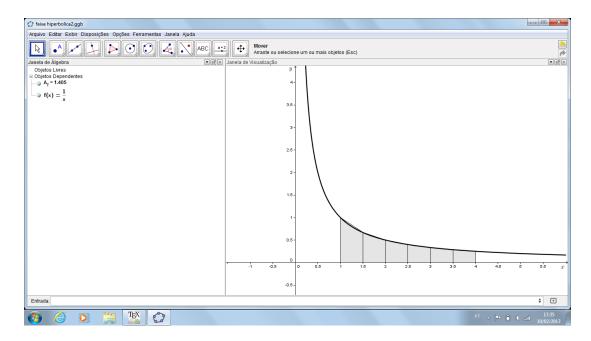


Figura 7: Área de \mathbb{H}_1^4 por trapézios.

4. Logaritmo natural

Definimos, a seguir, o logaritmo natural a partir da área de uma faixa de hipérbole $y=\frac{1}{x}$, com x>0.

Definição 4.1. Seja $x \in \mathbb{R}_+$. Chamamos logaritmo natural de x, e denotamos por $\ln x$, o valor atribuído à área da faixa \mathbb{H}_1^x .

Desta definição, vem que

$$A(\mathbb{H}_1^x) = \ln x$$
, para todo $x > 0$.

Para 0 < x < 1, convencionamos $A\left(\mathbb{H}_1^x\right) = -A\left(\mathbb{H}_x^1\right)$. Observemos que

- (1) $\ln x > 0$, para x > 1, pois $\ln x = A(\mathbb{H}_1^x) > 0$.
- (2) $\ln x < 0$, para 0 < x < 1, pois $\ln x = A(\mathbb{H}_1^x) < 0$.
- (3) $\ln 1 = 0$, pois \mathbb{H}_1^1 reduz-se a um segmento de reta, e $A\left(\mathbb{H}_1^1\right) = 0$.
- (4) $\ln x$ não está definido para x < 0.

Exemplo 4.2. Obteremos um valor aproximado para ln 2.

Pela Definição 4.1, $\ln 2 = A\left(\mathbb{H}_1^2\right)$. Para uma aproximação, dividiremos o intervalo [1,2] em dez partes iguais, que estão listados na tabela a seguir, juntamente com os valores de $\frac{1}{x}$ quando x assume valores limites de cada uma das divisões.

x	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
1/ <i>x</i>	1	0,909	0,833	0,769	0,714	0,666	0,625	0,588	0,555	0,526	0,500

Usando aproximações por retângulos inferiores, formamos dez retângulos com base medindo 0,1 e altura $\frac{1}{x}$. Assim,

$$A\left(\mathbb{H}_{1}^{2}\right) = 0.1.(0,909+0,833+0,769+0,714+0,666+0,625+0,588+0,555+0,526+0,500)$$

= 0,6685.

Logo, o valor aproximado de ln 2 é 0,6685. Evidentemente, se usarmos a soma trapezoidal para uma divisão em mais partes iguais do intervalo [1,2], temos mais próximo de ln 2. Faremos isso com o uso do GeoGebra.

Vamos construir, com a ajuda do GeoGebra a função $y=\frac{1}{x}$, para $x\in(0,k]$, com k>2. Digite na caixa de entrada Função[1/x,0,5], esse último valor indica até onde irá o intervalo de contrução da função, dando um *enter* irá aparecer a função que já estávamos trabalhando. Então, façamos um controle deslizante, de nome n, variando de 1 a 300 (ou mais) e incremento 0,1. Então, fazemos a soma trapezoidal para o valor de $A(\mathbb{H}^2_1)$. Digitamos SomaTrapezoidal [f,1,2,n] e dê um *enter*. Aparecerá a região que estamos querendo e, fazendo n percorrer o intervalo estipulado para ele, teremos na parte superior esquerda da tela o valor aproximado de [n]. Veja Figura 8.

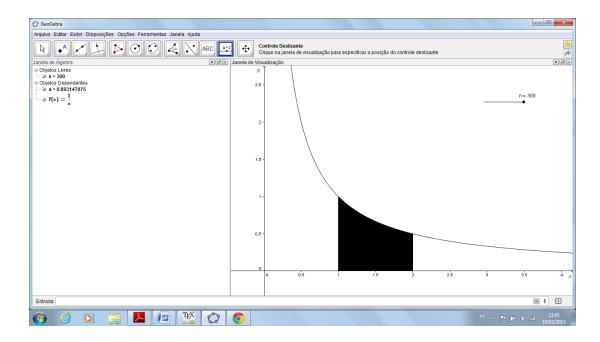


Figura 8: ln 2 usando GeoGebra.

Teorema 4.3. A função $\ln : \mathbb{R}_+ \to \mathbb{R}$ é logarítmica.

Demonstração: Para que $\ln x$ seja uma função logarítmica, ela deve satisfazer duas propriedades: $\ln(x.y) = \ln x + \ln y$ e, também, deve ser uma função crescente. Primeiramente, sabemos que $A\left(\mathbb{H}_a^b\right) = A\left(\mathbb{H}_{ak}^{bk}\right)$, para $k \in \mathbb{R}_+$. Então, $A\left(\mathbb{H}_x^{xy}\right) = A\left(\mathbb{H}_1^y\right)$. Independentemente da posição dos pontos 1, x e xy sobre o eixo das abscissas, vale

$$A\left(\mathbb{H}_{1}^{xy}\right) = A\left(\mathbb{H}_{1}^{x}\right) + A\left(\mathbb{H}_{x}^{xy}\right).$$

Por definição, $A\left(\mathbb{H}_1^{xy}\right)=\ln{(xy)}$, $A\left(\mathbb{H}_1^x\right)=\ln{x}$ e $A\left(\mathbb{H}_1^y\right)=\ln{y}$. Então, $\ln{(xy)}=\ln{x}+\ln{y}$. Agora, para provarmos que \ln{x} é

crescente, sejam $x, y \in \mathbb{R}_+$, com x < y. É fácil ver que existe a > 1 tal que y = ax. Então,

$$ln y = ln (ax) = ln a + ln x.$$

Como a > 1, temos $\ln a > 0$, logo $\ln y > \ln x$, como queríamos demonstrar.

Existem vários assuntos interessantes sobre o tema Logaritmos que poderiam ser explorados. Nossa intenção era que o aluno conhecesse a definição geométrica de logaritmos e a visualizasse utilizando o GeoGebra. Esperamos que esse objetivo seja alcançado com o auxílio deste trabalho. Para mais detalhes, indicamos as referências [1] e [2].

Referências

- L. X. Azevedo, Logaritmos Construção da definição geométrica com o uso do GeoGebra, Dissertação(mestrado), Universidade Estadual de Maringá, Profmat, 2013. 46, 64
- 2. E. L. Lima, Logaritmos, SBM, Rio de Janeiro, 2010. 51, 64
- 3. Anais do II Simpósio de Matemática e Matemática Industrial, vol. 1.
- 4. Anais do IX Seminário Nacional de História da Matemática, 2009.
- 5. Anais do X Encontro Nacional de Educação Matemática Comunicação Científica, Salvador, 2010.

Superfícies Parametrizadas

Doherty Andrade¹ & Jorge Ferreira de Lacerda ²

RESUMO: Neste trabalho apresentamos a parametrização das superfícies mais comumente utilizadas em cálculo, usamos a primeira forma quadrática para determinar áreas, e calculamos volumes por meio do teorema da divergência.

Palavras-chave: Superfícies parametrizadas. Cálculo Integral.*

Sumário

1	Introdução	66
2	Primeira Forma Quadrática	69
3	Área de uma superfície	73
4	Superfícies de Revolução	75
5	Integral de um campo escalar sobre uma superfície	76
6	Volumes via Teorema da Divergência	78
	1. Introdução	

Uma superfície parametrizada é uma função σ de classe C^1

tendo por domínio uma região simples D (do tipo I ou do tipo II).

Uma superfície é a imagem M de uma superfície parametrizada

$$\sigma: \quad D \quad \to \mathbb{R}^3$$
$$(u,v) \quad \mapsto ((x(u,v),y(u,v),z(u,v))$$

satisfazendo:

- σ é de classe C^1
- ¹ doherty200@hotmail.com
- ² jflacerda@uem.com
- * Publicado em 14-12-2017.

• σ é injetora no interior de D e se q_1 pertence ao interior de D e $q_2 \in \partial D$, então

$$\sigma(q_1) \neq \sigma(q_2)$$
.

• $N_{\sigma} = \sigma_u \times \sigma_v$ (vetor normal a M) não se anula no interior de D.

Aqui, $\sigma_u \times \sigma_v$ denota o produto vetorial das derivadas parciais σ_u e σ_v da função σ .

Uma tal função σ é chamada de uma parametrização de M.

Seja σ uma parametrização de M e $p_0 = \sigma(q_0)$ tal que $N_{\sigma(q_0)} \neq 0$. O plano tangente a M em um ponto p_0 é o plano que passa por p_0 e tem $N_{\sigma(q_0)}$ como vetor normal. O plano tangente de uma superfície S no ponto $p \in S$ é denotado por $T_p(S)$.

Exemplos

a) Seja $f:D\to\mathbb{R}$ uma função de classe C^1 . O gráfico de f é uma superfície M. Afirmamos que

$$\sigma: \quad D \quad \to \mathbb{R}^3$$
$$(x,y) \quad \mapsto (x,y,f(x,y))$$

é uma parametrização para M.

De fato, notemos facilmente que σ é de classe C^1 e injetora sobre D; além disso,

$$N_{\sigma} = \sigma_x \times \sigma_y = (-f_x, -f_y, 1) \neq 0.$$

b) Seja $f: D \to \mathbb{R}$ uma função de classe C^1 dada por $f(x,y) = \sqrt{x^2 + y^2}$, onde $D = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 \le 4\}$. O seu gráfico é uma superfície parametrizada por

$$\sigma: D \to \mathbb{R}^3$$

 $(x,y) \mapsto (x,y,\sqrt{x^2+y^2}),$

como vimos em a).

Uma parametrização alternativa para M pode ser:

$$\sigma: D' \to \mathbb{R}^3$$

 $(r,\theta) \mapsto (r\cos\theta, r\sin\theta, r),$

onde $D' = [0,2] \times [0,2\pi]$.

Aqui vemos que

$$\sigma_r = (\cos \theta, \sin \theta, 1)$$

$$\sigma_\theta = (-r \sin \theta, r \cos \theta, 0).$$

Assim, $N = (-r \operatorname{sen} \theta, r \cos \theta, r) \neq 0$. Vamos resumir:

Coordenadas Retangulares: Podemos olhar o gráfico de z = f(x, y), onde f é uma função C^1 definida sobre um domínio D, como uma superfície parametrizada com parâmetros x e y. Basta tomar

$$x = x$$
, $y = y$ e $z = f(x, y)$.

2 Coordenadas Polares: Do mesmo modo podemos olhar uma superfície dada em coordenadas cilindricas como $z = g(r, \theta)$, como uma superfície parametrizada. Basta definir

$$x = r\cos(\theta)$$
, $y = r\sin(\theta)$, $z = g(r, \theta)$.

3 Coordenadas Esféricas: Também podemos olhar uma superfície dada em coordendas esféricas $\rho=h(\phi,\theta)$ como uma superfície parametrizada com parâmetros ϕ e θ . Basta definir

$$x = h(\phi, \theta) \operatorname{sen} (\phi) \cos(\theta),$$

$$y = h(\phi, \theta) \operatorname{sen} (\phi) \operatorname{sen} (\theta),$$

$$z = h(\phi, \theta) \cos(\phi).$$

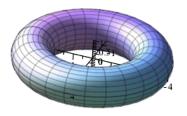
TORO: O toro é exemplo de uma superfície de revolução. É a superfície obtida pela revolução de um círculo em torno de uma reta que não o intersecta. Por exemplo, o círculo no plano xz de centro (b,0,0) e raio a com a < b dado por

$$(x-b)^2 + z^2 = a^2$$

girando em torno do eixo z tem a seguinte parametrização

$$x = r\cos(\theta) = (b + a\cos(\phi))\cos(\theta)$$
$$y = r\sin(\theta) = (b + a\cos(\phi))\sin(\theta)$$
$$z = a\sin(\phi)$$

Veja a seção §4 para mais informações sobre as superfícies de revolução.



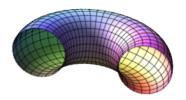


Figura 1: Toro

2. Primeira Forma Quadrática

O produto interno do $\mathbb{R}^3\supset S$ induz em cada plano tangente $T_p(S)$ de uma superfície parametrizada S um produto interno, denotado por $\langle .,. \rangle_p$. Se w_1 e w_2 pertencem a $T_p(S)$, então $\langle w_1, w_2 \rangle_p$ é igual a $\langle w_1, w_2 \rangle$ no \mathbb{R}^3 . A primeira forma fundamental I_p é a aplicação que a cada vetor w do plano tangente $T_p(S)$ da superfície S associa o número real $\langle w, w \rangle_p$. Se σ é uma parametrização para S, então podemos escrever I_p em termos dos vetores tangentes σ_u e

 σ_v : os coeficientes são dados por

$$E = \sigma_u \cdot \sigma_u$$

$$G = \sigma_v \cdot \sigma_v$$

$$F = \sigma_u \cdot \sigma_v$$

Calcule os coeficientes da primeira forma fundamental nos casos anteriores:

Clique aqui para ver o caso da superfície dada em coordenadas retangulares,

Clique aqui para ver a superfície em coordenadas polares, e Clique aqui para ver a superfície em coordenadas esféricas, e também nos seguintes casos:

a Parametrização do Plano: Sejam w_1 e w_2 vetores ortonormais, então

$$X(u,v) = p_0 + uw_1 + vw_2$$

onde $(u, v) \in \mathbb{R} \times \mathbb{R}$, é uma parametrização do plano.

b Parametrização do Cilindro: O cilindro $x^2 + y^2 = 1$, é parametrizado por

$$X(u,v) = (\cos u, \sin u, v)$$

onde $(u, v) \in [0, 2\pi] \times \mathbb{R}$.

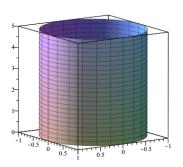


Figura 2: Cilindro

d Parametrização do Elipsóide: O elipsóide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

tem a seguinte parametrização

$$X(u,v) = (a sen \ u cos \ v, b sen \ u sen \ v, c cos \ u).$$

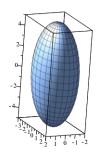


Figura 3: Elipsóide.

e Parametrização do Parabolóide: O parabolóide

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

tem a seguinte parametrização

$$X(u,v) = (au\cos v, bu\mathrm{sen}\ v, u^2)$$

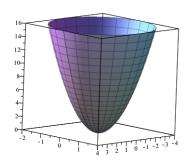


Figura 4: Parabolóide.

e Parametrização da Helicóide: A helicóide tem a seguinte parametrização

$$X(u,v) = (v\cos(u),v\mathrm{sen}\ (u),2u),$$

$$u \in [-2\pi,2\pi] \ \mathrm{e}\ v \in \mathbb{R}.$$

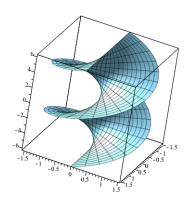


Figura 5: Helicóide.

e Parametrização do Hiperbolóide de duas folhas: O hiperbolóide de duas folhas tem a seguinte parametrização

$$X(u,v) = (\cos(u)\sinh(v), \sin(u)\sinh(v), \cosh(v)),$$

para a parte superior e

$$X(u,v) = (\cos(u)\sinh(v), \sin(u)\sinh(v), -\cosh(v)),$$

para a parte inferior. Nessa figura, $v \in [-2, 2]$ e $u \in [-2\pi, 2\pi]$.

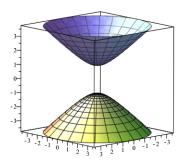


Figura 6: Hiperbolóide de duas folhas.

e Parametrização do Hiperbolóide de uma folha: O hiperbolóide de uma folha ou simplesmente hiperbolóide, tem a seguinte parametrização

$$X(u,v) = (\cosh(u)\cos(v), \cosh(u)\sin(v), \sinh(u)),$$

Nessa figura, $u \in [-2, 2]$ e $v \in [0, 2\pi]$.

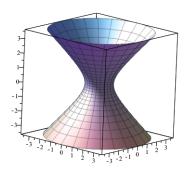


Figura 7: Hiperbolóide

3. Área de uma superfície

Seja $R\subset S$ uma região limitada de uma superfície regular contida num sistema de vizinhanças coordenadas da parametrização $X:U\subset\mathbb{R}^2\to S.$ O número positivo

$$\iint_O \|X_u \times X_v\| du \, dv = A(R), \quad Q = X^{-1}(R),$$

chamamos de área de R.

Note que

$$||X_u \times X_v||^2 + |\langle X_u, X_v \rangle|^2 = ||X_u||^2 \cdot ||X_v||^2,$$

de modo que

$$||X_u \times X_v|| = \sqrt{EG - F^2}.$$

Assim podemos reescrever

$$A(R) = \iint_{Q} ||X_{u} \times X_{v}|| du dv = \iint_{Q} \sqrt{EG - F^{2}} du dv.$$

Calcule a área da esfera de centro O e raio a>0. Seja σ a parametrização da esfera

$$\sigma(u,v)=(a\mathrm{sen}\ (u)\cos(v),a\mathrm{sen}\ (v)\mathrm{sen}\ (u),a\cos(u)),$$
 onde $0\leq u\leq \pi$ e $0\leq v\leq 2\pi$.

É fácil obter que

$$\sigma_u = (-a\cos u\cos v, a\mathrm{sen}\ v\cos u, -a\mathrm{sen}\ u)$$

$$\sigma_v = (-a \operatorname{sen} u \operatorname{sen} u, a \operatorname{cos} v \operatorname{sen} u, 0),$$

segue que

$$E = a^2$$
, $F = 0$, $G = a^2 \text{sen }^2 u$.

Logo,

$$||N|| = \sqrt{EG - F^2} = a^2 \operatorname{sen} v.$$

Portanto,

$$A(M) = \iint_D ||N|| = \iint_D \sqrt{EG - F^2} = \iint_D a^2 \text{sen } v du dv = 4\pi a^2.$$

2 Calcule a área da superfície M que é o gráfico da função $f(x,y) = \sqrt{x^2 + y^2}$ com $x^2 + y^2 \le 4$.

Uma parametrização para M é dada por

$$\sigma(r,\theta) = (r\cos\theta, r\sin\theta, r),$$

onde $0 \le r \le 2$ e $0 \le \theta \le 2\pi$.

É fácil obter que E = 2, $G = r^2$ e F = 0. Segue que

$$A(M) = \int \int_{D} \sqrt{2r^2} dr d\theta = 4\pi\sqrt{2}.$$

3 Calcule a área da superfície limitada pelo plano 2x + y + z = 4 e o cilindro $x^2 + y^2 = 1$.

SejamDo disco $x^2+y^2\leq 1$ e $\sigma:D\to\mathbb{R}^3$ a parametrização dada por

$$\sigma(x,y) = (x,y,4-2x-y).$$

Pode-se determinar que E = 5, F = 2 e G = 2. Logo,

$$A(M) = \iint_D \sqrt{EG - F^2} dA = \iint_D \sqrt{6} dA = \sqrt{6}$$
 área de $D = \pi\sqrt{6}$.

4 Calcule a área do toro.

clique aqui para ver a parametrização do toro.

Uma parametrização para o toro é dada por

$$\sigma(\phi, \theta) = ((b + a\cos\phi)\cos\theta, (b + a\cos\phi)\sin\theta, a\sin\phi)$$
,

onde $\phi, \theta \in [0, 2\pi]$.

Vemos que (tomando
$$b=3$$
 e $a=1$),
$$\sigma_{\phi}=(-\operatorname{sen}\phi\cos\theta,-\operatorname{sen}\phi\cos\theta,\cos\phi)$$

$$\sigma_{\theta}=((b+a\cos\phi)\operatorname{sen}\theta,(b+a\cos\phi)\cos\theta,0)\,,$$

onde temos que

$$E = 1$$
, $F = 0$, $G = (3 + \cos \phi)^2$.

Logo, a área de M é dada por

$$A(M) = \int_0^{2\pi} \int_0^{2\pi} \sqrt{(3 + \cos \phi)^2} = 12\pi^2.$$

4. Superfícies de Revolução

Uma maneira de obter uma superfície é girar um curva plana C em torno de uma reta L no seu plano. Isto dá uma superfície de revolução com eixo L.

Definição 1 (Superfície de Revolução) Seja C uma curva plana e L uma reta no mesmo plano da curva. A superfície obtida pela revolução da curva C em torno da reta L é chamada superfície de revolução. A reta L é chamada eixo e a curva C de geratriz.

A esfera pode ser gerada pela revolução de uma semi-circunferência.

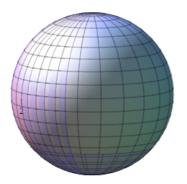


Figura 8: Esfera

O cilindro circular reto é obtido pela revolução de uma reta C em torno de uma reta paralela L.

Teorema 4.1 Seja $f:[a,b] \to \mathbb{R}$ uma função positiva com f' contínua em [a,b]. Se A é a área da superfície de revolução obtida girando-se a curva y = f(x) com $a \le x \le b$, em torno do eixo x, então temos

$$A = 2\pi \int_{a}^{b} |f(x)| \sqrt{[f'(x)]^{2} + 1} dx. \tag{*}$$

Se o gráfico da curva y=f(x), $a \le x \le b$, é girado em torno do eixo y, temos

$$A = 2\pi \int_{a}^{b} |x| \sqrt{[f'(x)]^{2} + 1} dx.$$

Para deduzir (*) devemos dar uma parametrização de *S*. Defina a parametrização por

$$x = u$$
, $y = f(u)\cos v$, $z = f(u)\sin v$

onde

$$a \le u \le b$$
, $0 \le v \le 2\pi$.

Agora usando a expressão para a área de uma superfície parametrizada obtemos que

$$A(S) = \int \int_{D} \sqrt{[f(u)]^{2} \sin^{2}v + [f(u)]^{2} \cos^{2}v + [f(u)]^{2} [f'(u)]^{2}} dv du$$

$$= \int \int_{D} |f(u)| \sqrt{1 + [f'(u)]^{2}} dv du$$

$$= \int_{a}^{b} \int_{0}^{2\pi} |f(u)| \sqrt{1 + [f'(u)]^{2}} dv du$$

$$= 2\pi \int_{a}^{b} |f(u)| \sqrt{1 + [f'(u)]^{2}} du.$$

5. Integral de um campo escalar sobre uma superfície

Seja M uma superfície confeccionada com material de densidade dada por f(x,y,z). Seja $\sigma:D\to\mathbb{R}^3\supset M$ uma parametrização para M. Queremos achar a massa de M. Para isto dividimos o domínio D em subretângulos D_i . A área de $\sigma(D_i)$ é aproximadamente

$$\sigma(D_i) \approx ||N(q_i)||A(D_i),$$

onde q_i é um ponto de D_i . Segue que a massa de $\sigma(D_i)$ é aproximadamente

$$\sigma(D_i) \approx f(\sigma(q_i) || N(q_i) || A(D_i).$$

Somando obtemos uma aproximação para a massa de *M*:

$$\sum_{i=1}^{n} f(\sigma(q_i)) || N(q_i) || A(D_i),$$

que é uma soma de Riemann que converge para

$$\int \int_D f(\sigma(q)) ||N(q)|| dA.$$

Generalizando este este exemplo definimos:

Definição 2 Se f é um campo escalar contínuo, cujo domínio contém a superfície M, a integral de f sobre M, indicada por

$$\int \int_{M} f(p) dS \text{ ou } \int \int_{M} f dS,$$

é definida por

$$\int \int_{M} f dS = \int \int_{D} f(\sigma(q)) \|N(q)\| dA = \int \int_{D} f(\sigma(q)) \sqrt{EG - F^{2}} dA.$$

Se $f(x,y,z)\equiv 1$, então o que se obtém na integral acima coincide com a área da superfície.

Tomo exemplo, calcule a massa da esfera centrada na origem e de raio 2 situada no primeiro octante, onde a densidade é dada por f(x,y,z) = xyz.

Uma parametrização para a esfera é dada por

$$\sigma(u,v) = (2\cos u \operatorname{sen} v, 2\operatorname{sen} u \operatorname{sen} v, 2\cos v),$$

onde $u, v \in [0, \frac{\pi}{2}]$.

Podemos determinar facilmente

$$\sigma_u = (-2\mathrm{sen} \, v \mathrm{sen} \, u, 2\cos v \cos u, 0),$$

$$\sigma_v = (2\cos v\cos u, 2\cos v \sin u, -2 \sin v).$$

Logo, obtemos

$$E = 4 - \cos^2 v$$
, $G = 4$, $F = 0$.

Portanto,

$$\text{massa}(M) = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} 2\left(2\text{sen } v\cos u + 4\cos^2 v\right) \sqrt{4 - \cos^2 v} du \, dv = \frac{14}{3}\pi.$$

2 Mesmo situação com a helicóide dada por

$$\sigma(u,v) = (v\cos u, v \mathrm{sen}\ u, au),$$

onde $u \in [0, 2\pi]$ e $v \in [0, 2]$. Podemos determinar facilmente

$$\sigma_u = (-v \operatorname{sen} u, v \operatorname{cos} u, 2)$$

$$\sigma_v = (\cos u, \sin u, 0)$$

Donde obtemos

$$E = 4 + v^2$$
, $G = 1$, $F = 0$

Portanto,

$$\text{massa}(M) = \int_0^{2\pi} \int_0^2 \sqrt{4 + v^2} du \, dv$$

6. Volumes via Teorema da Divergência

Usualmente, no cálculo diferencial, o volume de sólidos é calculado por meio de uma integral dupla ou tripla. O Teorema da Divergência fornece outra alternativa para o cálculo do volume de sólidos limitados por uma superfície.

Antes de apresentar esta alternativa vamos calcular, a título de exemplo, o volume do toro da maneira usual.

A superfície do toro (as vezes também chamada de Toro) é gerada pela rotação de uma circunferência em torno de uma reta que não a intersecte.

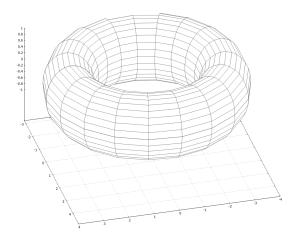


Figura 9: Toro

Considere a circunferência do plano xz de centro (a,0,0) e raio b onde a>b>0. A rotação desta circunferência em torno do eixo z gera um toro de equação cartesiana dada por

$$(a - \sqrt{x^2 + y^2})^2 + z^2 = b^2$$

Denotemos por T a superfície do toro e por T a região limitada por esta superfície, denominada *toro sólido*.

O toro sólido é simétrico em relação ao plano z=0. Portanto seu volume é o dobro do volume da porção do toro acima deste plano. Esta região é descrita por

$$0 \le z \le \sqrt{b^2 - (a - \sqrt{x^2 + y^2})^2}$$
, $a - b \le \sqrt{x^2 + y^2} \le a + b$

O volume do toro pode ser obtido, então, pela seguinte integral

$$Vol(T) = 2 \int \int_{D} \sqrt{b^{2} - (a - \sqrt{x^{2} + y^{2}})^{2}} dA$$

onde D é a região dada por $a - b \le \sqrt{x^2 + y^2} \le a + b$.

Para facilitar o cálculo da integral acima, descrevemos a região D em coordenadas polares (r, θ) por

$$D: a-b \le r \le a+b$$
, $0 \le \theta \le 2\pi$

Assim

$$Vol(\mathbf{T}) = 2 \int_0^{2\pi} \int_{a-b}^{a+b} \sqrt{b^2 - (a-r)^2} \ r dr d\theta = 2 \cdot 2\pi \int_{a-b}^{a+b} \sqrt{b^2 - (a-r)^2} \ r dr d\theta$$

Fazendo a mudança de variável u = r - a obtemos

$$\int_{a-b}^{a+b} \sqrt{b^2 - (a-r)^2} \, r \, dr = \int_{-b}^{b} \sqrt{b^2 - u^2} (u+a) =$$

$$\int_{-b}^{b} \sqrt{b^2 - u^2} \, u \, du + a \int_{-b}^{b} \sqrt{b^2 - u^2} \, du$$

Fazendo a mudança de variável $w=b^2-u^2$ obtemos $\int_{-b}^b \sqrt{b^2-u^2}\ u\,du=\frac{-1}{2}\int_0^0 \sqrt{w}\,dw=0$

Consultando uma tabela de integração encontramos

$$\int_{-b}^{b} \sqrt{b^2 - u^2} du = \frac{u}{2} \sqrt{b^2 - u^2} + \frac{b^2}{2} \operatorname{sen}^{-1}(\frac{u}{2})]_{-b}^{b} = \frac{\pi b^2}{2}$$

Assim

Vol(T) =
$$2 \cdot 2\pi a \frac{\pi b^2}{2} = (2\pi a)(\pi b^2)$$

Observe que o volume do toro é equivalente ao volume de um cilindro cuja base é o círculo de raio b e altura, o comprimento do círculo de raio a.

Volumes pelo Teorema da Divergência O Teorema da divergência relaciona uma integral de superfície com uma integral tripla e pode ser usado para obter o volume de um sólido limitado por uma superfície atravez de uma integral de superfície.

Seja $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ a base canônica de \mathbb{R}^3 . Um *campo de vetores* em \mathbb{R}^3 é dado na forma $F = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$, onde A, B e C são funções definidas em um subconjunto de \mathbb{R}^3 , chamado aqui de *domínio* do campo F, com valores em \mathbb{R}^3 .

Seja S uma superfície contida no domínio do campo F, parametrizada por X(u,v), $u,v\in D$ e seja $\eta=X_u\times X_v$ o vetor normal da parametrização.

A integral do campo *F* sobre a superfície *S* é definida por

$$\int_{S} F \cdot dS = \int \int_{D} \langle F(X(u,v)), \eta \rangle \, dA$$

O teorema da divergência estabelece que se F é um campo de vetores definido em um aberto contendo um sólido S limitado por uma superfície S com uma parametrização X(u,v), $(u,v) \in D$ que orienta S positivamente, isto é, o vetor normal $\eta = X_u \times X_v$ aponta para fora do sólido S, então

$$\int \int_{\mathbf{S}} F \cdot dS = \int \int \int_{\mathbf{S}} \operatorname{div} F \, dV$$

onde o *Divergente* do campo F é a função escalar dada por

$$\operatorname{div} F = A_x + B_y + C_z$$

Para mais detalhes quanto aos termos e as hipóteses deste teorema, veja [1], J. Stewart, Cálculo, vol II.

Observação: Se a parametrização orienta S negativamente (η aponta para dentro de S) a integral $\int \int_S F \cdot dS$ apenas troca de sinal. Assim, qualquer que seja a orientação dada pela parametrização, vale a relação

$$\left| \int \int_{\mathbf{S}} F \cdot dS \right| = \left| \int \int \int_{\mathbf{S}} \operatorname{div} F \, dV \right|$$

Suponha que o campo F tem divergente constante não nulo, isto é, $\mathrm{div}F=k\neq 0$.

Então,

$$\iint \int \int_{\mathbf{S}} \operatorname{div} F \, dV = \iint \int \int_{\mathbf{S}} k \, dV = k \iint \int \int_{\mathbf{S}} dV$$

Agora,

$$\int \int \int_{\mathbf{S}} dV = \text{Vol}(\mathbf{S})$$

Assim,

$$Vol(\mathbf{S}) = \frac{1}{k} \int \int \int_{\mathbf{S}} \operatorname{div} F \, dV$$

Do teorema da divergência obtemos

Vol (S) =
$$\frac{1}{|k|} \left| \int \int_{S} F \cdot dS \right|$$

A relação acima, que denominamos *fórmula de volume*, mostra que podemos obter o volume de um sólido limitado por uma superfície integrando sobre ela qualquer campo com divergente constante não nulo.

Observação: Há muitas escolhas para o campo F com divergente constante, cada uma delas produzindo um integrando $\langle F, \eta \rangle$ para a integral a ser calculada na obtenção do volume.

Vamos usar esta fórmula para calcular o volume do toro experimentando algumas escolhas para o campo *F*.

Uma parametrização da superfície de um toro é dada, na forma de equações, por

$$x = (a + b\cos u)\cos v$$
, $y = (a + b\cos u)\sin v$, $z = b\sin u$;

em que $0 \le u$, $v \le 2\pi$, com correspondente forma vetorial

$$X(u,v) = (a+b\cos u)\cos v\mathbf{i} + (a+b\cos u)\sin v\mathbf{j} + b\sin u\mathbf{k}.$$

Calculemos o vetor normal desta parametrização:

$$X_u = -b \operatorname{sen} u \cos v \mathbf{i} - b \operatorname{sen} u \operatorname{sen} v \mathbf{j} + b \cos u \mathbf{k}$$

$$X_v = -(a + b\cos u)\operatorname{sen} v\mathbf{i} + (a + b\cos u)\cos v\mathbf{j} + 0\mathbf{k}$$

Assim, após simplificações, o vetor normal é dado por

$$\eta = X_u \times X_v = -b(a + b\cos u)[\cos u\cos v\mathbf{i} + \cos u\sin v\mathbf{j} + \sin u\mathbf{k}]$$

Considere o campo $F = 0\mathbf{i} + y\mathbf{j} + 0\mathbf{k}$.

O divergente de F é dado por divF = 1.

Aplicando a fórmula de volume obtemos

$$Vol(\mathbf{T}) = |\int \int_{\mathbf{S}} F \cdot dS|$$

Calculemos, então, a integral de superfície dada na fórmula:

Para aplicar a definição da integral de supefície precisamos dos seguintes cálculos:

$$F(X(u,v)) = 0\mathbf{i} + (a+b\cos u)\operatorname{sen} v\mathbf{j} + 0\mathbf{k}$$

$$\langle F(X(u,v)), \eta \rangle = -b(a+b\cos u)^2 \cos u \operatorname{sen}^2 v$$

Assim,

$$\int \int_{S} F \cdot dS = \int_{0}^{2\pi} \int_{0}^{2\pi} -b(a+b\cos u)^{2}\cos u \sec^{2}v \, du \, dv =$$

$$-b \int_{0}^{2\pi} \sin^{2}v \, dv \int_{0}^{2\pi} (a+b\cos u)^{2}\cos u \, du$$

$$\int_0^{2\pi} (a+b\cos u)^2 \cos u \, du = a^2 \int_0^{2\pi} \cos u \, du + 2ab \int_0^{2\pi} \cos^2 u \, du + b^2 \int_0^{2\pi} \cos^3 u \, du.$$

Consultando uma tabela de integração encontramos,

$$\int_0^{2\pi} \sin^2 u \, du = \pi \;, \quad \int_0^{2\pi} \cos u \, du = 0 \;, \quad \int_0^{2\pi} \cos^2 u \, du = \pi \;, \quad \int_0^{2\pi} \cos^3 u \, du = 0.$$

Assim,
$$\int_0^{2\pi} (a+b\cos u)^2 \cos u \, du = 2\pi ab.$$

O volume do toro é, então, dado por

Vol (T) =
$$|-b\pi(2\pi ab)| = (2\pi a)(\pi b^2)$$

Tomemos agora o campo $F = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Note que divF = 3. Para este campo obtemos, após simplificações,

$$\langle F(X(u,v)), \eta \rangle = -ab^2 - (a^2b + b^3)\cos u - ab^2\cos^2 u$$

Observe que, para esta escolha do campo F, o integrando $F \cdot \eta$ depende somente da variável u. Assim

$$\int \int_{S} F \cdot dS = \int_{0}^{2\pi} \int_{0}^{2\pi} \left[-ab^{2} - (a^{2}b + b^{3})\cos u - ab^{2}\cos^{2}u \right] du dv$$

Levando em conta que $\int_0^{2\pi} \cos u \, du = 0$ e que o integrando não depende de v, obtemos a integral mais simples que aquela dada pela primeira escolha do campo F.

$$\int \int_{S} F \cdot dS = 2\pi \int_{0}^{2\pi} (-ab^{2} - ab^{2} \cos^{2} u) du = 2\pi (-ab^{2}) \int_{0}^{2\pi} (1 + \cos^{2} u) du =$$

$$= 2\pi (-ab^{2})(2\pi + \pi) = 6\pi^{2}(-ab^{2}).$$

Aplicando a fórmula de volume com k = 3 obtemos,

Vol (T) =
$$\frac{1}{3}|6\pi^2(-ab^2)| = 2\pi^2ab^2 = (2\pi a)(\pi b^2)$$

Questão: Existe um campo F para o qual o integrando $\langle F, \eta \rangle$ é constante?

Exercício: Use a fórmula de volume para obter o volume do elipsóide de semi eixos a, b e c com parametrização dada por $x=a \operatorname{sen} u \cos v$, $y=b \operatorname{sen} u \operatorname{sen} v$, $z=c \cos u$, $0 \le u \le \pi$, $0 \le v \le 2\pi$.

Referências

- [1] J. Stewart, Cálculo vol 2, Pioneira, 1999. 80
- [2] Z. Abud and P. Boulos, Cálculo vol 2.
- [3] Cálculo Diferencial e Integral: um kit de sobrevivência disponível em www.dma.uem.br/kit. Visitado em janeiro de 2017.

O Modelo de crescimento de peixes de Von Bertalanffy

Ermerson Arnaut de Toledo - DMA-UEM

RESUMO: Neste trabalho apresentamos a equação diferencial de Von Bertalanffy que modela o crescimento de peixes. Embora seja uma equação diferencial simples e com solução explícita, a dedução do modelo envolve algumas dificuldades.

Palavras-chave: Crescimento de Peixes. Von Bertalanffy. EDO's. *

Sumário

1	Introdução	84
Introdução		84
2	O Modelo de Von Bertalanffy	85
3	O Modelo de Von Bertalanffy para o Peso	87
4	Analisando a solução	89
\mathbf{R}	Referências	

1. Introdução

No estudo do crescimento de animais existem dois aspectos a serem considerados: um deles se refere a mudanças no comprimento do corpo

^{*} Publicado em 14-12-2017.

e o outro está relacionado a mudanças no peso. Assim, quando falamos de crescimento animal estamos falando do comprimento à medida que o tempo passa, ou ao crescimento no peso à medida que o tempo passa. Numa população, o crescimento de um individuo é geralmente caracterizado por uma expressão que representa o crescimento individual de algum animal "médio" na população. Os peixes exibem um tipo de crescimento conhecido como indeterminado, isto é, não existe um ponto de sua vida no qual o crescimento está completo. Durante um certo tempo de sua vida o crescimento do peixe é acompanhado de mudança na forma do corpo, este crescimento é conhecido como alométrico. Após atingir esse estágio o crescimento ocorre enquanto que a forma do corpo se mantém relativamente constante, neste caso dizemos que o crescimento é isométrico.

2. O Modelo de Von Bertalanffy

É um modelo bastante utilizado, pois ele se aplica a um grande número de espécies animais. É devido a Ludwig Von Bertalanffy (1938).

Antes de introduzir o modelo alguns comentários sobre a alimentação de peixes e sobre proteínas e aminoácidos são importantes. Proteínas são compostos orgânicos formados por diversos aminoácidos, existem diferentes tipos de proteínas caracterizadas pela proporção e posição dos aminoácidos que as compõem. Os peixes possuem proteínas dispostas em uma grande variedade de tecidos tais como: ossos, pele, órgãos, musculatura, etc. A proteína corporal está constantemente sendo reposta por dois processos: anabolismo (síntese de proteína no organismo) e catabolismo (quebra de proteínas no organismo). O peso de um organismo em qualquer instante depende da resultante de duas

forças opostas: anabolismo (síntese da proteína) e catabolismo (quebra da proteína).

A taxa de anabolismo é considerada como sendo proporcional à magnitude da superfície fisiológica de reabsorção do animal, enquanto que a taxa de catabolismo é proporcional ao peso do corpo. O tamanho da superfície fisiológica de reabsorção não é diretamente mensurável mas supõe-se que seja proporcional ao quadrado de alguma dimensão linear. O peso também é tomado como sendo proporcional ao cubo de alguma dimensão linear.

Os processos de anabolismo e catabolismo ocorrem simultaneamente durante a vida de um animal, a diferença entre eles em um instante define a taxa na qual o peso do animal varia no instante t. Portanto, podemos obter uma equação diferencial que define a taxa de variação instantânea do peso.

$$\frac{dw}{dt} = pS - \beta w,\tag{1}$$

onde p é o coeficiente de anabolismo, β é o coeficiente de catabolismo, S é o tamanho da superfície fisiológica de reabsorção e w é o peso do corpo do peixe.

Como S e w são proporcionais ao quadrado e cubo, respectivamente, de alguma dimensão linear, então

$$S = al^2 e \ w = bl^3$$
,

onde a e b são constantes apropriadas de proporcionalidade. Substituindo essas expressões para S e w na equação 1, obtemos:

$$\frac{dw}{dt} = \frac{(bl^3)}{dt} = pal^2 - \beta bl^3. \tag{2}$$

Isto é,

$$3bl^2 \frac{dl}{dt} = pal^2 - \beta bl^3. (3)$$

Segue que,

$$\frac{dl}{dt} = \frac{pa}{3b} - \frac{\beta}{3}l. \tag{4}$$

Esta equação é uma equação diferencial ordinária, que vamos escrevê-la na seguinte forma:

$$\frac{dl}{dt} + kl = \lambda,\tag{5}$$

onde $k = \frac{\beta}{3}$ e $\lambda = \frac{pa}{3b}$.

É uma equação diferencial simples, em que utilizamos a técnica do fator integrante para obter a solução, explícita:

$$l(t) = \frac{\lambda}{l} + Ce^{-kt}.$$
 (6)

Supondo que o comprimento do peixe no instante t_0 é $l=l_0$, obtemos que $C=l_0-\frac{\lambda}{k}$. Substituindo esse valor na equação na equação 6, obtemos que

$$l(t) = \frac{\lambda}{k} + \left(l_0 - \frac{\lambda}{k}\right) e^{-kt}.$$
 (7)

Quando $t \to \infty$ observamos que $l(t) \to \frac{\lambda}{k} = l_{\infty}$. Ou seja, o comprimento do peixe tende a um valor assintótico.

Portanto, podemos reescrever a equação 5 em termos l_{∞} e obter:

$$l(t) = l_{\infty} + (l_0 - l_{\infty}) e^{-kt}.$$
 (8)

que é conhecida como a equação de Von Bertalanffy para o crescimento, em comprimento, do peixe.

Uma maneira de se estimar os valores de l_{∞} e k quando se tem uma tabela de valores experimentais, consiste em tomar a reta y = mx + n pela regressão linear dos valores l(t) e l(t+1), isto é,

$$l(t+1) = ml(t) + n$$
, onde $m = e^{-kt}$ e $n = l_{\infty}(1 - e^{-kt})$. (9)

Considerando que quando $t \to \infty$, $l(t+1) \approx l(t) = l_{\infty}$, obtemos

$$l_{\infty} = ml_{\infty} + n,$$

isto é,

$$l_{\infty} = \frac{n}{1 - m}.$$

Como $m={\rm e}^{-k}$, temos que $k=-\ln(m)$. Esse processo para o cálculo de k e de l_∞ é atribuído a Ford-Waldorf.

3. O Modelo de Von Bertalanffy para o Peso

Como $S=al^2$ e $w=bl^3$, para constantes apropriadas, podemos obter que $w^{2\beta}=b^{2\beta}l^2$ e daí temos que

$$l^2 = \frac{w^{\frac{2}{3}}}{h^{\frac{2}{3}}}.$$

Logo,

$$S = \frac{aw^{\frac{2}{3}}}{h^{\frac{2}{3}}}$$

e assim, a equação 1 pode ser escrita na forma

$$\frac{dw}{dt} = \frac{pa}{h_3^2} w^{\frac{2}{3}} - \beta w, \tag{10}$$

ou seja,

$$\frac{dw}{dt} + \beta w = \alpha w^{\frac{2}{3}},\tag{11}$$

onde $\alpha = \frac{pa}{b^{\frac{2}{3}}}$.

Esta equação diferencial é de Bernoulli $(y'(x) + P(x)y = Q(x)y^n)$. Dividindo 11 por $w^{\frac{2}{3}}$, obtemos

$$w^{-\frac{2}{3}}\frac{dw}{dt} + \beta w^{\frac{1}{3}} = \alpha. \tag{12}$$

Fazendo a substituição $v = w^{\frac{1}{3}}$, temos

$$\frac{dv}{dt} = \frac{1}{3}w^{-\frac{2}{3}}\frac{dw}{dt}.$$
(13)

Substituindo na equação 13, obtemos

$$3\frac{dv}{dt} + \beta v = \alpha.$$

Ou seja,

$$\frac{dv}{dt} + \frac{1}{3}\beta v = \frac{\alpha}{3},\tag{14}$$

que é uma equação linear de primeira ordem em v. Novamente, utilizando a técnica do fator integrante, temos

$$v(t) = \frac{\alpha}{\beta} + Ce^{-\frac{\beta t}{3}}.$$
 (15)

Como $v = w^{\frac{1}{3}}$, obtemos

$$w(t) = \left(\frac{\alpha}{\beta}\right)^3 \left(1 + \frac{C\beta}{\alpha} e^{-\frac{\beta t}{3}}\right)^3.$$
 (16)

Quanto t = 0, o valor de w é insignificante, assim podemos tomar w(0) = 0 para obter

$$\left(\frac{\alpha}{\beta}\right)^3 \left(1 + \frac{C\beta}{\alpha}\right)^3 = 0$$

e então $(1 + \frac{C\beta}{\alpha}) = 0$, o que nos dá $C = -\frac{\alpha}{\beta}$. Logo,

$$w(t) = \left(\frac{\alpha}{\beta}\right)^3 \left(1 - e^{-\frac{\beta t}{3}}\right)^3. \tag{17}$$

Quando t cresce, isto é, $t \to \infty$ obtemos que $w(t) \to \left(\frac{\alpha}{\beta}\right)^3$. Para simplificar e chamando este valor de w_{∞} e $k = \frac{\beta}{3}$, obtemos

$$w(t) = w_{\infty} \left(1 - e^{-kt} \right)^3 \tag{18}$$

que nos dá o peso do peixe em cada instante t.

4. Analisando a solução

Vamos agora fazer uma análise dessa equação. Derivando 18 em relação a t, temos

$$\frac{dw}{dt} = 3kw_{\infty} \left(1 - e^{-kt}\right)^2 e^{-kt}.$$

Derivando novamente, obtemos

$$\frac{d^2w}{dt^2} = 3k^2 w_{\infty} e^{-kt} \left(1 - e^{-kt} \right) \left(3e^{-kt} - 1 \right).$$

Observe que $\frac{dw}{dt}=0$ quando t=0 ou quando $t\to\infty$. Por outro lado, $\frac{d^2w}{dt^2}=0$ se t=0, quando $t\to\infty$ ou quando $t=\frac{\ln(3)}{k}$.

Além disso, se $w \neq 0$ então $\frac{dw}{dt} > 0$, ou seja, o o peso é sempre crescente, tendo um valor limite w_{∞} .

Matematicamente w_{∞} é "atingido" quando $t \to \infty$, mas na realidade este "tempo infinito" é de aproximadamente 10 anos. Esta contradição pode ser minorada se, por exemplo, estabelecermos que 99 por cento do peso limite é atingido aos 10 anos.

Por outro lado, $t^* = \frac{\ln(3)}{k}$ é um ponto de inflexão da curva obtida de 18 e

$$w(t^*) = w_0 (1 - e^{\ln 3})^3 \approx 0,296w_{\infty}.$$

O valor $t^*=\frac{\ln(3)}{k}$ é o instante de maior variação de peso do peixe, pois $\frac{dw}{dt}$ atinge o seu valor máximo em $t=t^*$.

Em [3] foi obtido para o peixe Tilápia os seguintes dados:

$$w(0) = 26g$$
 $l_0 = 11$
 $w_{\infty} = 935g$ $\alpha = 4,723$
 $\beta = 0,483$

Assim,

$$w(t) = 0.0194 (36.36 - 25.36exp(-0.161t))^{3}.$$

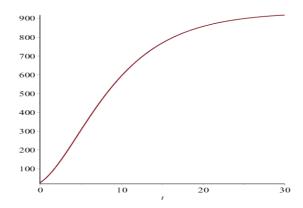


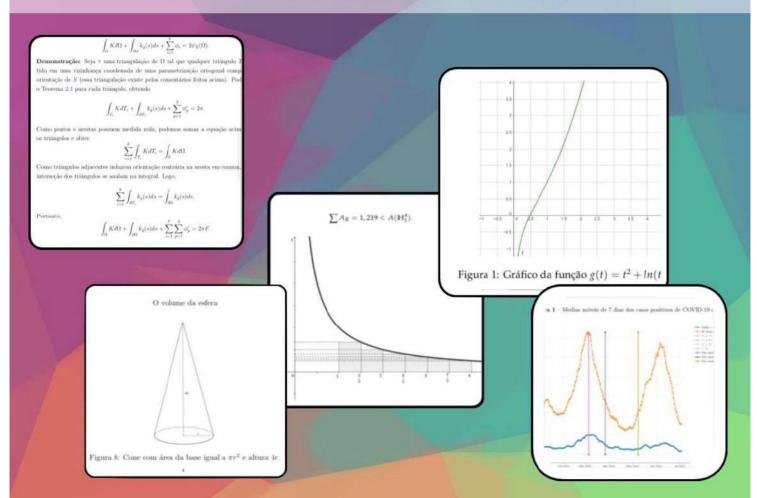
Figura 1: Curva de crescimento da Tilápia.

A figura ilustra o pouco ganho de peso do peixe a partir de um determinado instante.

Referências

- 1. Juliana Scapim e Rodney C. Bassanezi. Modelo de von Bertalanffy generalizado aplicado às curvas de crescimento animal. Revista Biomatemática, 18 (2008), páginas 114, ISSN 1679-365X.
- 2. Bassanezi, R. C. e Ferreira Jr, W. C. (1978). Equações diferenciais com aplicações. Ed. Harbra, S. Paulo.
- 3. J. C. de Araújo e R. Garcia, Marquez. Modelos Matemáticos apra o peso médio de Tilápias. Cadernos do IME- Série Matemática. Vol. 20 (2–8).

BALBULO DIFERENBIAL E INTEGRAL: um kit de sobrevivência



Esta revista é responsável pela formulação de textos autorais desenvolvido pelo projeto de extensão "Kit". Neste projeto, contamos com alunos graduandos e demais interessados em matemática aplicada.

Entre seus textos, podemos encontrar, curiosidades, resoluções, demonstrações, fatos relevantes, ideais para IC. entre outros!