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Abstract: This article presents geometric aspects of the ellipse analyzed from
the point of view of the taxicab metric. We first construct the taxicab ellipse
by exploring its symmetric properties. From this, we analyze the action of
isometries of the Euclidean context and verify whether these are transforma-
tions that preserve distances on the taxicab geometry. In particular, we study
the behaviour of the taxicab ellipse with respect to rotations. We also obtain
an algebraic equation for the regular octagon in the plane directly from the
fact that every regular octagon is an taxicab ellipse.
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1. Introduction

The Euclidean metric is defined as the measure of a line segment connecting any two
points, derived from the basic geometry developed by Euclid (300 b.C.). This method of
measurement is not always the best choice to represent the displacement of people and
vehicles, particularly in large urban centers, because moving in a straight line is not always
an option. Thus, choosing a more convenient metric is a good way to describe the urban
displacement and, in this sense, the taxicab metric is a good alternative.

The taxicab geometry was introduced by the German mathematician Hermann Minkowski
(1864-1909). It is a form of geometry in which the Euclidean metric is replaced by the
sum metric, or the so-called taxicab metric, given on the Euclidean plane by the function
dT : R2 × R2 → R defined by

dT ((x1, y1), (x0, y0)) = |x1 − x0|+ |y1 − y0|. (1)

This distance gives the minimum length of a path from (x1, y1) ∈ R2 to (x0, y0) ∈ R2

constructed from horizontal and vertical line segments (see Figure 1). So the taxicab metric,
also called Manhattan metric, is the most used in urban networks because it is more consistent
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with the perpendicular lines of the streets and avenues of modern and planned cities. We cite
references (DREILING, 2012; HANSON, 2012; INY, 1984; KRAUSE, 1986; KUNWAR, 2018;
REINHARDT, 2005; SOWELL, 1989; THOMPSON; DRAY, 2000) for an introductory study
of concepts of taxicab geometry. In these works, the authors explore this new geometry in
relation to Euclidean geometry. In (REINHARDT, 2005), for example, the distance defined
in (1) is used to find the solutions to three problems proposed by Eugene F. Krause in
(KRAUSE, 1986).

Figure 1: Taxicab metric.

Therefore, taxicab geometry is a non-Euclidean geometry with the advantage of being
quite intuitive compared to other non-Euclidean geometries, although some geometric prop-
erties obtained in the usual metric do not remain in this new perspective. An example of
this is the change in the geometric configuration of the conics, with the appearance of singu-
larities. In this direction, taxicab geometry reveal interesting and surprising properties, as
can be seen in (CHICIU, 2012; CRUZ, 2015; LOIOLA; COSTA, 2015; PETROVIC et al.,
2025). In particular, in (CHICIU, 2012) the author examines conics under different metrics,
including the taxicab metric, by a graphical approach. In (CRUZ, 2015), it is presented some
symmetry conditions of taxicab ellipse that help in the recognition of its geometric proper-
ties. In (PETROVIC et al., 2025), the authors analyze the geometry of some curves (conics,
circles and trifocal ellipses) in this context, including the study of area and perimeter.

In this article, we analyze the ellipse defined under the taxicab metric by taking advantage
of its symmetries in the process of its geometric construction. Section 2 contains general
results for this construction. In Section 3 we verify if Euclidean isometries also preserve
distances in this new context. In Section 4 we use the taxicab ellipse to provide an algebraic
equation for the set of points in a regular octagon.
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2. Ellipse on the taxicab geometry

We start with the definition of an ellipse in the Euclidean plane R2.

Definition 2.1 Let d : R2×R2 → R be an arbitrary metric and F1, F2 ∈ R2 two fixed points
such that d(F1, F2) = 2c, for some c > 0. An ellipse ΦF1,F2 of foci F1 and F2 is the locus of
points on the plane whose sum of the distances to F1 and to F2 is a constant 2a > 0, where
a > c. Symbolically,

ΦF1,F2 = {P ∈ R2 : d(P, F1) + d(P, F2) = 2a}.

Therefore, an ellipse is a plane curve surrounding two focus points F1 and F2. The
standard form of an ellipse in the Euclidean metric is known as in Figure 2. However, the
metric d in the Definition 2.1 is arbitrary and we can consider the taxicab metric.

Figure 2: Euclidean ellipse.

From now on, we consider the Euclidean plane R2 equipped with the taxicab metric
defined in (1), namely

dT (P,Q) = |x1 − x0|+ |y1 − y0|, (2)

for all P = (x1, y1), Q = (x0, y0) ∈ R2. We will call the ellipse defined with the metric dT

of taxicab ellipse, or simply of taxi-ellipse. According to Definition 2.1, if F1 = (x1, y1) and
F2 = (x2, y2) are the foci of the taxi-ellipse, then ΦF1,F2 is the set of all points (x, y) ∈ R2

such that
|x− x1|+ |y − y1|+ |x− x2|+ |y − y2| = 2a. (3)

In the search for ordered pairs that satisfy equation (3), we recognize the importance of
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investigating some type of symmetry in the taxi-ellipse. For this purpose, we present the
following proposition.

Proposition 2.2 Let ΦF1,F2 be a taxi-ellipse of foci F1 = (x1, y1) and F2 = (x2, y2). Then
(x, y) ∈ ΦF1,F2 if and only if (x, y1 + y2 − y) ∈ ΦF1,F2. Similarly, (x, y) ∈ ΦF1,F2 if and only
if (x1 + x2 − x, y) ∈ ΦF1,F2.

Proof: We have (x, y) ∈ ΦF1,F2 if and only if (x, y) satisfies the equation (3). Obviously,
this equality is the same as

|x− x1|+ |y2 − y|+ |x− x2|+ |y1 − y| = 2a,

which is equivalent to

|x− x1|+ |(y1 + y2 − y)− y1|+ |x− x2|+ |(y1 + y2 − y)− y2| = 2a.

In turn, this last equality occurs if and only if (x, y1 + y2 − y) ∈ ΦF1,F2 . In the same way, (3)
is the same as

|x2 − x|+ |y − y1|+ |x1 − x|+ |y − y2| = 2a,

which is equivalent to

|(x1 + x2 − x)− x1|+ |y − y1|+ |(x1 + x2 − x)− x2|+ |y − y2| = 2a.

Therefore, (x, y) ∈ ΦF1,F2 if and only if (x1 + x2 − x, y) ∈ ΦF1,F2 .
■

Corollary 2.3 Let ΦF1,F2 be a taxi-ellipse of foci F1 = (x1, y1) and F2 = (x2, y2). Then
(x, y) ∈ ΦF1,F2 if and only if (x1 + x2 − x, y1 + y2 − y) ∈ ΦF1,F2.

Using Proposition 2.2 and Corollary 2.3, we can do an alternative analysis of the geometric
behavior of a taxi-ellipse taking into account its symmetries. For this, assume without loss
of generality that x1 ≤ x2 and y1 ≤ y2. Given (x, y) ∈ ΦF1,F2 , consider the cases:

(i) If x ≤ x1 and y ≤ y1, the equation (3) reduces to

−x+ x1 − y + y1 − x+ x2 − y + y2 = 2a,

that is, (x, y) lies on the straight line

r : y = −x− a+
1

2
(x1 + y1 + x2 + y2).
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(ii) If x ≤ x1 and y1 ≤ y ≤ y2, the equation (3) becomes

−x+ x1 + y − y1 − x+ x2 − y + y2 = 2a,

that is, (x, y) lies on the straight line

s : x = −a+
1

2
(x1 − y1 + x2 + y2).

(iii) If x1 ≤ x ≤ x2 and y ≤ y1, the equation (3) becomes

x− x1 − y + y1 − x+ x2 − y + y2 = 2a,

that is, (x, y) lies on the straight line

t : y = −a+
1

2
(−x1 + y1 + x2 + y2).

The geometric representation of the points (x, y) ∈ ΦF1,F2 that satisfy the cases (i), (ii)
and (iii) is given in Figure 3, for hypothetical F1 and F2.

Figure 3: Part of a taxi-ellipse.

There are more straight lines in the plane that satisfy equation (3). In fact, by Proposition
2.2, if (x, y) ∈ ΦF1,F2 , then (x1 + x2 − x, y) ∈ ΦF1,F2 . Supposing that x ≥ x2 and y ≤ y1, we
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have
x′ = x1 + x2 − x ≤ x1 and y ≤ y1

In this case, since (x′, y) ∈ ΦF1,F2 , it follows that (x′, y) ∈ r, that is,

y = −x′ − a+
1

2
(x1 + y1 + x2 + y2).

Therefore, (x, y) lies on the line

r′ : y = x− a+
1

2
(−x1 + y1 − x2 + y2).

In other words, for x ≥ x2 and y ≤ y1, the points (x, y) that belong to the taxicab ellipse
ΦF1,F2 are on the line segment r′.

Similarly, if (x, y) ∈ ΦF1,F2 , then (x, y′) ∈ ΦF1,F2 , where y′ = y1 + y2 − y. Assuming that
x ≤ x1 and y ≥ y2, we have x ≤ x1 and y′ ≤ y1. In this case, (x, y′) ∈ r, that is,

y′ = −x− a+
1

2
(x1 + y1 + x2 + y2).

Thus, (x, y) lies on the line

s′ : y = x+ a+
1

2
(−x1 + y1 − x2 + y2).

Therefore, for x ≤ x1 and y ≥ y2 the points (x, y) ∈ ΦF1,F2 are on the line segment s′.
Now using Corollary 2.3, if (x, y) ∈ ΦF1,F2 , then (x′, y′) ∈ ΦF1,F2 , where x′ = x1 + x2 − x

and y′ = y1 + y2 − y. Note that x ≥ x2 and y ≥ y2 if and only if x′ ≤ x1 and y′ ≤ y1. In this
case (x′, y′) ∈ r, that is,

y′ = −x′ − a+
1

2
(x1 + y1 + x2 + y2),

so that (x, y) lies on the line

t′ : y = −x+ a+
1

2
(x1 + y1 + x2 + y2).

Therefore, for x ≥ x2 and y ≥ y2, the points (x, y) ∈ ΦF1,F2 are on the line segment t′.
So far, we obtain the taxi-ellipse for the regions of the plane such that x ≤ x1; x1 ≤ x ≤ x2

and y ≤ y1; x ≥ x2 and y ≤ y1; x ≥ x2 and y ≥ y2. The geometric representation of ΦF1,F2

is in accordance with Figure 4.
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Figure 4: Incomplete taxi-ellipse.

Only three cases remain to be analyzed: x ≥ x2 and y1 ≤ y ≤ y2; x1 ≤ x ≤ x2 and
y ≥ y2; x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. First, we assume x ≥ x2 and y1 ≤ y ≤ y2. Again,
if (x, y) ∈ ΦF1,F2 , then (x′, y) ∈ ΦF1,F2 , where x′ = x1 + x2 − x. In this case x′ ≤ x1 and
y1 ≤ y ≤ y2, so that (x′, y) ∈ s. Therefore

x′ = −a+
1

2
(x1 − y1 + x2 + y2),

which implies that (x, y) belongs to the line

u : x = a+
1

2
(x1 + y1 + x2 − y2).

We assume now that x1 ≤ x ≤ x2 and y ≥ y2. Again, if (x, y) ∈ ΦF1,F2 , then (x, y′) ∈
ΦF1,F2 , where y′ = y1+y2−y. In this case x1 ≤ x ≤ x2 and y′ ≤ y1, so that (x, y′) ∈ t. Thus,

y′ = −a+
1

2
(−x1 + y1 + x2 + y2),

or equivalently

u′ : y = a+
1

2
(x1 + y1 − x2 + y2).

Therefore, for x1 ≤ x ≤ x2 and y ≥ y2, the only points (x, y) ∈ ΦF1,F2 are on the line segment
u′. It remains only to analyze the case x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. For this region, the
equation (3) becomes

x2 − x1 + y2 − y1 = 2a.
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Then
dT (F1, F2) = |x2 − x1|+ |y2 − y1| = 2a.

Since dT (F1, F2) = 2c, we conclude that c = a, which contradicts the hypothesis a > c in
Definition 2.1. Therefore, there are no points in the taxicab ellipse ΦF1,F2 in this region.

Note that the geometric configuration of ΦF1,F2 for the case x1 ≤ x2 and y1 ≤ y2 is that of
an octagon, as shown in Figure 5. However, we also have taxi-ellipses in the form of hexagons,
as we shall see in the next section. We suggest using GeoGebra software (GEOGEBRA. . . ,
2025) for a better visualization of the geometrical behaviour of taxi-ellipses when we vary
the foci F1 and F2.

Figure 5: Taxi-ellipse.

3. Symmetries of the taxi-ellipse

In this section, we present some properties of the taxi-ellipse related to its symmetries in
the Euclidean context. Geometrically, symmetries are defined in terms of isometries, that is,
geometric transformations that preserve the distance between any two points. However, not
every isometry is a symmetry. More specifically, we have the following definition.

Definition 3.1 Let (M,dM) and (N, dN) be metric spaces. We say that f : M → N is an
isometry if dN(f(x), f(y)) = dM(x, y), for all x, y ∈ M .

With the standard metric, isometries are transformations that do not change the size and
the configuration of a figure, but they can change its position on the space. In this context,
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we cite the translations, rotations, reflections and glide reflections as the only four types of
isometries (different from the identity) on the plane. Based on the concept of isometry, we
define the symmetries of a figure as follows.

Definition 3.2 We say that a plane figure is symmetric if there exists an isometry on R2

different from the identity that transforms that figure into itself. In this case, such isometry
is called a symmetry of the figure.

Therefore, by the geometric configuration of the taxi-ellipse ΦF1,F2 obtained in the Figure
5, we can see that some rotations and reflections behave as symmetries of ΦF1,F2 in the
Euclidean context. For example, we will show in the next section that every regular octagon
is a taxi-ellipse. In this case, rotation around the origin of angle θ = π

4
, as well as reflections

around coordinate axes, constitutes its Euclidean symmetries.
It is important to question whether rotations and reflections also act as symmetries in

taxicab geometry. To address this, we first verify whether translations, rotations, and reflec-
tions are isometries under the metric dT defined in (2). We will see that the answer to this
question is affirmative for translations and negative for rotations and reflections.

Proposition 3.3 Translations under the taxicab metric are isometries.

Proof: Let Ta : R2 → R2 be the translation Ta(x, y) = (x+a1, y+a2), with a = (a1, a2) ∈
R2 fixed. For any (x, y), (x1, y1) ∈ R2, we have

dT ((x, y), (x1, y1)) = |x− x1|+ |y − y1|
= |(x+ a1)− (x1 + a1)|+ |(y + a2)− (y1 + a2)|
= dT ((x+ a1, y + a2), (x1 + a1, y1 + a2))

= dT (Ta(x, y), Ta(x1, y1)),

implying that every translation is an isometry in the taxicab geometry.
■

Also in the Euclidean plane, a rotation is a transformation that turns every point of a
figure through a specified angle and around a fixed point. The rotation around the origin of
angle θ ∈ R is the linear mapping Rθ : R2 → R2 defined by

Rθ(x, y) = (cos θ x− sin θ y, sin θ x+ cos θ y).

As we mentioned, Rθ is an isometry under the Euclidean metric for all θ ∈ R. However, the
same is not true under taxicab metric. In fact, consider P = (1, 0) and Q = (0, 1). Then

dT (P,Q) = |1− 0|+ |0− 1| = 2
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and

dT (Rθ(P ), Rθ(Q)) = dT ((cos θ, sin θ), (− sin θ, cos θ)) = | cos θ + sin θ|+ | sin θ − cos θ|.

For 0 < θ ≤ π

4
, we have

dT (Rθ(P ), Rθ(Q)) = cos θ + sin θ − sin θ + cos θ = 2 cos θ ̸= 2.

Similar calculations show that dT (Rθ(P ), Rθ(Q)) ̸= dT (P,Q), for all θ ̸= kπ
2

, with k ∈ Z. It is
important to emphasize that Rθ is an isometry under the taxicab metric for all θ = kπ

2
, with

k ∈ Z. For the simplicity of the computations, we omit the proof of this statement here.
Similarly, reflections can change the distance between two points of R2 in the taxicab

geometry. More precisely, a reflection is a transformation whose set of fixed points forms a
hyperplane. In two dimensions, this set is called the axis of reflection, and the image of a
figure under a reflection is its mirror image across this axis. In algebraic terms, a reflection
across a straight line that passes through the origin and forms an angle α with the x-axis,
for 0 ≤ α < π, is the linear mapping Mα : R2 → R2 defined by

Mα(x, y) = (cos 2αx+ sin 2αy, sin 2αx− cos 2αy).

For P = (1, 0), Q = (0, 1) and 0 < α ≤ π

8
, we have

dT (Mα(P ),Mα(Q)) = dT ((cos 2α, sin 2α), (sin 2α,− cos 2α))

= | cos 2α− sin 2α|+ | sin 2α + cos 2α|

= cos 2α− sin 2α + sin 2α + cos 2α

= 2 cos 2α ̸= 2.

Direct calculations show that dT (Mα(P ),Mα(Q)) ̸= dT (P,Q), for all α ̸= kπ
4

, with k ∈
{0, 1, 2, 3}. However, Mα is an isometry under the taxicab metric for all α = kπ

4
, with

k ∈ {0, 1, 2, 3}. Again, we omit the proof of this statement. Therefore, we have the following
result:

Proposition 3.4 Rotations Rθ are isometries under the taxicab metric if and only if θ = kπ
2
,

with k ∈ Z. In the same way, reflections Mα are isometries under the taxicab metric if and
only if α = kπ

4
, with k ∈ {0, 1, 2, 3}.

We then conclude that in the taxicab geometry the rotation of angle θ = π
4

can not be
a symmetry of the regular octagon, contrary to what occurs in the Euclidean context. The
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previous proposition suggest that rotations and reflections can change the size and shape of
a plane figure in this new context. To verify this, we analyze the behavior of the taxi-ellipse
under rotations by applying usual trigonometric relations (of Euclidean geometry). For an
approach to trigonometry developed in the taxicab geometry, we refer to (THOMPSON;
DRAY, 2000).

For the remainder of this section we follow the approach presented in (CRUZ, 2015, pp.
42-48), where the author discusses the rotation movements of the focal line of a taxi-ellipse
for the particular case in which c = 1 and a = 2. In our study, the values of c and a (a > c)
are arbitrary.

Consider the foci F1 = (x1, y1) and F2 = (x2, y2) of the taxi-ellipse ΦF1,F2 with respect to
the canonical basis of R2. Denote by r̂ the focal line determined by F1 and F2. We want to
write the foci F1 and F2 as vector functions of the angle θ formed between r̂ and the x-axis
(see Figure 6). Without loss of generality, we assume the taxi-ellipse with center at the origin
and F2 in the first quadrant. For 0 ≤ θ ≤ π

2
, we have

cos(θ) =
x2

l
and sin(θ) =

y2
l
,

where l =
dE(F1, F2)

2
and dE is the Euclidean metric. Therefore,

F1 = (−l cos(θ),−l sin(θ)) and F2 = (l cos(θ), l sin(θ)). (4)

Replacing the coordinates of F1 and F2 in the equation (3), the relation that determines the
points (x, y) ∈ ΦF1,F2 is given by

|x+ l cos(θ)|+ |y + l sin(θ)|+ |x− l cos(θ)|+ |y − l sin(θ)| = 2a. (5)
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Figure 6: Angle between r̂ and the x-axis.

We now rotate the taxi-ellipse ΦF1,F2 by varying the value of θ in order to analyze the
changes that can occur in its geometric configuration. For this, we rotate the focal line r̂

determined by F1 and F2.
Considering θ = 0 (foci on the x-axis), we have F1 = (−l, 0) e F2 = (l, 0). In this case,

by using the equations of the line segments r, s, t, r′, s′, t′, u and u′ obtained in Section 2 for
x1 = −x2 = −l and y1 = y2 = 0, we obtain

r : y = −x− a, for x ≤ −l and y ≤ 0,

s : x = −a, for x ≤ −l and y = 0,

t : y = −a+ l, for −l ≤ x ≤ l and y ≤ 0,

r′ : y = x− a, for x ≥ l and y ≤ 0,

s′ : y = x+ a, for x ≤ −l and y ≥ 0,

t′ : y = −x+ a, for x ≥ l and y ≥ 0,

u : x = a, for x ≥ l and y = 0,

u′ : y = a− l, for −l ≤ x ≤ l and y ≥ 0.

Therefore, the geometric configuration in this case is characterized by a hexagon, as we show
in Figure 7.

Similarly, considering θ = π
4

and using the equations of the line segments r, s, t, r′, s′, t′, u
and u′ obtained in Section 2 for x1 = y1 = −l

√
2
2

e x2 = y2 = l
√
2
2

, we have an octagon as in
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Figure 7.

Figure 7: Taxi-ellipse for θ = 0 and θ = π
4
, respectively.

For θ = π
3
, taking x1 = −x2 = − l

2
and y1 = −y2 = −l

√
3
2

in the equations of the line
segments r, s, t, r′, s′, t′, u and u′ obtained in Section 2, we obtain an octagon as in Figure 8.

The last analyzed case refers to θ = π
2

(foci on the y-axis) whose geometric configuration
is given by a hexagon, as in Figure 8.
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Figure 8: Taxi-ellipse for θ = π
3

and θ = π
2
, respectively.

According to these examples, rotations of angles π
4
, π

3
and π

2
clearly change the geometric

configuration of a taxi-ellipse and, therefore, are not symmetries. In particular, the rotation
Rπ

2
is an isometry on R2 (Proposition 3.4) that is not a symmetry of ΦF1,F2 .

4. Equation for the regular octagon

The purpose of this section is to obtain an algebraic equation for the regular octagon in
the plane. We first explore some properties of the internal angles of the taxi-ellipse ΦF1,F2

and then show that every regular octagon is a taxi-ellipse.
We restrict our study to the first quadrant, since ΦF1,F2 is symmetrical with respect to

the coordinate axes under the Euclidean metric (see Proposition 2.2). Again, we write F1

and F2 as in (4), with 0 ≤ θ ≤ π
2
. By the fundamental trigonometric identity, the equation

(5) can be rewritten as

|x+ l cos θ|+ |y + l
√
1− cos2 θ|+ |x− l cos θ|+ |y − l

√
1− cos2 θ| = 2a. (6)

Note that x+ l cos θ ≥ 0 and y+ l
√
1− cos2 θ ≥ 0, since cos θ ∈ [0, 1]. Therefore, (6) becomes

x+ l cos θ + y + l
√
1− cos2 θ + |x− l cos θ|+ |y − l

√
1− cos2 θ| = 2a
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whose equality implies in the following cases:

a) If x ≥ l cos θ and y ≥ l
√
1− cos2 θ, then (x, y) ∈ ΦF1,F2 satisfies the equation x+y = a.

b) If x ≥ l cos θ and y ≤ l
√
1− cos2 θ, then (x, y) ∈ ΦF1,F2 satisfies the equation x =

a− l
√
1− cos2 θ.

c) If x ≤ l cos θ and y ≥ l
√
1− cos2 θ, then (x, y) ∈ ΦF1,F2 satisfies the equation y =

a− l cos θ.

It is not necessary to consider the case x ≤ l cos θ and y ≤ l
√
1− cos2 θ, because there are

no points of ΦF1,F2 in this region. In fact, the symmetric properties of ΦF1,F2 allow it to be
centered at the origin (see Figure 9).

Figure 9: Cases a) − c) for δ = cos θ.

First, we consider case a). If x = l cos θ, then y = a− l cos θ; if y = l
√
1− cos2 θ, then x =

a−l
√
1− cos2 θ. Denoting A1 = (l cos θ, a−l cos θ) and A2 = (a−l

√
1− cos2 θ, l

√
1− cos2 θ),

the length C1 of the line segment A1A2 is given by

C1 =
√

(l cos θ − (a− l
√
1− cos2 θ))2 + (a− l cos θ − (l

√
1− cos2 θ))2

=
√

(l(cos θ +
√
1− cos2 θ)− a)2 + (l(cos θ +

√
1− cos2 θ)− a)2

=
√
2|l(cos θ +

√
1− cos2 θ)− a|

=
√
2(a− l(cos θ +

√
1− cos2 θ)).



Equation for the regular octagon 53

The last equality follows because a > c = 1
2
dT (F1, F2), with F1 = (−l cos θ,−l

√
1− cos2 θ) e

F2 = (l cos θ, l
√
1− cos2 θ). Thus, as we consider the first quadrant, we obtain

a >
1

2

(
|l cos θ + l cos θ|+ |l

√
1− cos2 θ + l

√
1− cos2 θ|

)
= l(cos θ +

√
1− cos2 θ),

which also implies that C1 ̸= 0. Therefore,

C1 =
√
2(a− l(cos θ +

√
1− cos2 θ)) > 0. (7)

For case b), the points (x, y) ∈ ΦF1,F2 satisfy the equation x = a − l
√
1− cos2 θ. In this

case, we calculate the length C2 of the line segment A2B2, where B2 = (a− l
√
1− cos2 θ, 0)

belongs to the x-axis (see Figure 10). Therefore,

C2 = l
√
1− cos2 θ. (8)

Figure 10: Line segment A2B2 for δ = cos θ.

In case c), the points (x, y) ∈ ΦF1,F2 satisfy the equation y = a− l cos θ. In this case, we
calculate the length C3 of the line segment D1A1, where D1 = (0, a− l cos θ) belongs to the
y-axis (see Figure 11). Thus, we obtain

C3 = l cos θ. (9)
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Figure 11: Line segment D1A1 for δ = cos θ.

We remark that the lengths C1, C2 and C3 are also determined in (CRUZ, 2015, pp.
49-55) for the case c = 1 and a = 2. The values obtained in (7), (8) and (9) generalize this
case. Based on these values, we now analyze the internal angles of the taxi-ellipse ΦF1,F2 .
The following result allows us to obtain fundamental properties for the construction of the
algebraic expression that characterizes the regular octagon.

Lemma 4.1 Every taxi-ellipse has at least one internal angle equal to 3π
4
. Furthermore, all

internal angles are equal if and only if C2 and C3 are non-zero.

Proof: We have that C1 is strictly positive, so A1 ̸= A2. In addition, C2 and C3 do not
vanish simultaneously. Clearly, the only relevant internal angles for our analysis are those
represented in Figure 12 because the others are congruent to them, by Proposition 3.

Figure 12: Internal angles.
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As we restrict our study to the first quadrant, we compare the angles between the following
three line segments:

i) k: line segment of equation x+ y = a, with x ∈ [l cos θ, a− l
√
1− cos2 θ];

ii) v: vertical line segment, if it exists, of equation x = a − l
√
1− cos2 θ, with x > 0 and

y ∈ [0, l
√
1− cos2 θ];

iii) h: horizontal line segment, if it exists, of equation y = a − l cos θ, with y > 0 and
x ∈ [0, l cos θ].

The non-existence of v and h in the taxi-ellipse ΦF1,F2 is related to the possibility of
C2 and C3 being equal to zero, respectively. The segment k always exists, since C1 > 0.
In addition, the internal angles of ΦF1,F2 are determined by the largest angle between the
straight lines containing such segments. We divide the proof into three cases:

1. If C2 ̸= 0 and C3 ̸= 0, then the segments v and h exist, whose direction vectors have
coordinates (−1, 1) and (1, 0), respectively. Therefore, the angle α ∈ [π

2
, π] between k

and h is determined by

cosα =
⟨(−1, 1), (1, 0)⟩

||(−1, 1)||||(1, 0)||
= −

√
2

2
.

Hence α = 3π
4

. Similarly, we conclude that the angle between the segments k and v is
also 3π

4
, since its direction vectors have coordinates (−1, 1) and (0,−1), respectively.

2. If C2 = 0, then the segment h exists (since C3 ̸= 0). The angle α between k and h

has been calculated in the previous case, that is, α = 3π
4

. In addition, as C2 = 0, the
segment k has its end point on the x-axis (see Figure 7 for θ = 0). In this case, the
angle β ∈ [0, π

2
] between k and the x-axis is determined by

cos β =
⟨(−1, 1), (−1, 0)⟩

||(−1, 1)||||(−1, 0)||
=

√
2

2
,

that is, β = π
4
. According to Proposition 3, the taxi-ellipse constructed in this case is

composed of another line segment k′ which is the reflection of k across the x-axis. The
angle formed between k and k′ is equal to 2β = π

2
.

3. If C3 = 0, then the segment v exists (since C2 ̸= 0). The angle α between k and v has
also been calculated in the first case, that is, α = 3π

4
. Moreover, as C3 = 0, the segment
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k has its initial point on the y-axis (see Figure 8 for θ = π
2
). Similar to the previous

case, the angle γ ∈ [0, π
2
] between k and the y-axis is determined by

cos γ =
⟨(1,−1), (0,−1)⟩

||(1,−1)||||(0,−1)||
=

√
2

2
,

that is, γ = π
4
. By Proposition 3, the angle between k and the segment k′′, which is

the reflection of k with respect to the y-axis, is equal to 2γ = π
2
.

Therefore, from Proposition 3, we conclude the following: in case 1 (C2 ̸= 0 and C3 ̸= 0),
all internal angles of the taxi-ellipse ΦF1,F2 are equal to 3π

4
, which also proves the necessary

condition for C2 and C3 to be non-zero; in cases 2 and 3 (either C2 = 0 or C3 = 0), at least
one internal angle of ΦF1,F2 is equal to 3π

4
. In these cases, every internal angle of ΦF1,F2 is

necessarily equal to π
2

or 3π
4

and, therefore, ΦF1,F2 has distinct internal angles. This proves
the sufficient condition for C2 and C3 to be non-zero.

■

Before the two main results of this section, we will use again the values of C1, C2 and C3

obtained in (7)-(9) to obtain conditions so that a taxi-ellipse ΦF1,F2 has all its sides equal.
For this, we denote by dE the Euclidean metric and by dT the taxicab metric. In addition,
remember that r̂ denotes the line determined by F1 and F2 and that θ ∈ [0, π

2
] denotes the

angle formed between r̂ and the x-axis.

Lemma 4.2 All sides of a taxicab elipse ΦF1,F2 are equal if and only if

a = (1 +
√
2)l e C2 = C3 =

√
2

2
l,

where l =
dE(F1, F2)

2
. In this case, the angle between the focal line r̂ and the x-axis is π

4
.

Proof: Clearly, a taxicab ellipse ΦF1,F2 has all its sides equal if and only if

C1

2
= C2 = C3. (10)

According to (8) and (9), we have C2 = C3 if and only if

l(cos θ − sin θ) = 0,

which occurs if and only if θ = π
4
, because l ̸= 0. In this case

C1 =
√
2(a−

√
2l) and C2 = C3 =

√
2

2
l.



Equation for the regular octagon 57

Thus, the first equality of (10) is valid if and only if a−
√
2l = l, that is1 , a = (1 +

√
2)l.

■

As a consequence, we have the following theorem.

Theorem 4.3 Every regular octagon is a taxicab ellipse.

Proof: Let O be a regular octagon with sides measuring l̃ > 0. Consider the circle C of
center at the origin and radius

√
2
2
l̃ under the Euclidean metric. Note that the intersection of

C with the line y = x occurs at the points F̃1 = (− l̃
2
,− l̃

2
) and F̃2 = ( l̃

2
, l̃
2
). Thus, the line r̂

determined by F̃1 and F̃2 has equation y = x and forms an angle equal to π
4

with the x-axis.
In addition,

dE(F̃1, F̃2) =
√
2l̃.

Consider F̃1 and F̃2 as the foci of the taxi-ellipse ΦF̃1,F̃2
. Since the angle θ between r̂ and the

x-axis is equal to π
4
, it follows from (8) and (9) that

C2 = C3 =

√
2l̃

2

√
2

2
=

l̃

2
.

Therefore, taking

a = (1 +
√
2)

√
2l̃

2
= (

√
2

2
+ 1)l̃,

we have by Lemma 4.2 that all sides of ΦF̃1,F̃2
are equal, namely equal to l̃. Since C2 ̸= 0 and

C3 ̸= 0, it follows from Lemma 4.1 that all the internal angles of ΦF̃1,F̃2
are equal to 3π

4
, that

is, ΦF̃1,F̃2
is a regular octagon with sides measuring l̃. Therefore, O = ΦF̃1,F̃2

.
■

Based on the previous theorem, we obtain an algebraic equation for the regular octagon
with sides measuring l̃.

Corollary 4.4 Let O be the regular octagon centered on the origin with sides measuring l̃.
Then every point (x, y) ∈ O satisfies the equation

|x+
l̃

2
|+ |y + l̃

2
|+ |x− l̃

2
|+ |y − l̃

2
| = (

√
2 + 2)l̃.

Proof: By the proof of Theorem 4.3, O is a taxi-ellipse with foci F̃1 = (− l̃
2
,− l̃

2
) and

F̃2 = ( l̃
2
, l̃
2
) and with a = (

√
2
2
+ 1)l̃. Then we use the equation (3).

■
1Note that a > c, as required in Definition 2.1. In fact, it follows from (LIMA, 2014, p. 6) that

c =
1

2
dT (F1, F2) ≤ dE(F1, F2) = 2l. So a = (1 +

√
2)l > 2l ≥ c.
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It is natural now to ask whether there are other regular polygons that are taxi-ellipses.
The answer to this question is negative, as the following theorem shows.

Theorem 4.5 The only regular polygons that are taxi-ellipses are regular octagons.

Proof: By Lemma 4.1, every taxi-ellipse has at least one internal angle equal to 3π
4

. As
every regular polygon has its internal angles equal and the only ones with internal angles
equal to 3π

4
are octagons, the result follows.

■
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