O Método da Bissecção

Prof. Doherty Andrade

Resumo: Nestas notas vamos apresentar os fundamentos teóricos do método da bissecção.

Sumário

1	Intr	rodução	1
2	O m	nétodo da bissecção	1
	2.1	Método prático	2
	2.2	Por que o método funciona?	2
	2.3	Estimativa para o número de iterações	3

1 Introdução

Estamos interessados em resolver equações não lineares f(x) = 0. Uma solução de f(x) = 0 é também chamada de raiz de f. Dizemos que α é uma raiz de f(x) com multiplicidade m > 0, se

$$f(\alpha) = 0, f'(\alpha) = 0, \dots, f^{(m-1)}(\alpha) = 0, f^{(m)}(\alpha) \neq 0.$$

Se m=1 dizemos que a raiz é simples, isto é, $f(\alpha)=0$ mas $f'(\alpha)\neq 0$.

Em toda essa seção, a menos que se diga o contrário, vamos supor que as raízes sejam simples.

2 O método da bissecção

O método da bissecção é inteiramente baseado no Teorema do Valor Intermediário, ele garante a existência de uma solução para f(x) = 0 no intervalo (a, b) desde que $f : [a, b] \to \mathbb{R}$ seja contínua e satisfaz f(a)f(b) < 0.

Para ver o teorema do valor intermediário clique AQUI.

Nas condições do teorema do valor intermediário, o método da bissecção consiste em dividir o intervalo [a,b] ao meio, obtendo os subintervalos [a,m] e [m,b], e considerar como intervalo de busca o subintervalo em que f tem sinais opostos nos extremos. Em seguida repete-se o procedimento com o subintervalo de interesse. Após um número finito de subdivisões ou encontramos uma solução ou sabemos que a raiz encontra-se em algum subintervalo $[a_k,b_k]$.

Consideremos $f:[a,b]\to\mathbb{R}$ contínua tal que f(a)f(b)<0. Seja m o ponto médio de [a,b]. Note que se f(a)f(m)<0, então o teorema do valor intermediário garante que a raiz se encontra no intervalo [a,m].

Se f(a)f(m) > 0, então temos que $f(a)f(m)f(a)f(b) = [f(a)]^2 f(m)f(b) < 0$, pois $[f(a)]^2 > 0$. Segue que f(m)f(b) < 0 e portanto, pelo teorema do valor intermediário, a raiz se encontra no intervalo [m, b].

Esse é o teste para decidir quais dos subintervalos devemos considerar no próximo passo do método da bissecção.

Chamando $a_0 = a$ e $b_0 = b$ e efetuando sucessivas bissecções, obtemos intervalos $[a_k, b_k]$ e pontos médios m_k . Note que $|b_k - a_k| = b_k - a_k = \frac{b-a}{2^k}$.

2.1 Método prático

Uma maneira prática para utilizar o método da bissecção é apresentada a seguir para a função $f(x) = \left(\frac{x}{2}\right)^2 - \sin(x)$, x em radianos.

• Exemplo 2.1

Determinar uma aproximação para uma raiz positiva da função $f(x) = \left(\frac{x}{2}\right)^2 - \sin(x)$ no intervalo [1.5, 2], x em radianos. Note que f(x) = 0 se, e somente se, $\left(\frac{x}{2}\right)^2 = \sin(x)$. Veja a tabela 1

		1	,
l_k	b_k	m_k	$f(a_k)f(m_k)$

rabeia	1:	rabeia	para	bissecçao

k	a_k	b_k	m_k	$f(a_k)f(m_k)$
0	1.5	2.0	1.75	>0 o intervalo escolhido é $[m_k,b_k]$
1	1.75	2.0	1.875	> 0
2	1.875	2.0	1.9375	< 0 o intervalo escolhido é $[a_k, m_k]$
3	1.875	1.9375	1.90625	>0 o intervalo escolhido é $[m_k,b_k]$
4	1.90625	1.9375	1.921875	> 0

Assim, uma aproximação para a raiz procurada é $m_5 = 1.921875$.

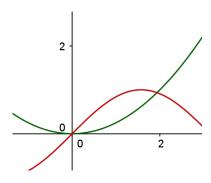


Figura 1: Gráfico de $\left(\frac{x}{2}\right)^2$ e $\sin(x)$ se cruzam na solução.

Por que o método funciona? 2.2

O método da bissecção gera sempre uma sequência que converge para a solução. De fato, o método gera uma sequência de intervalos encaixados $I_0 = [a_0, b_0] \supset I_1 = [a_1, b_1] \supset I_2 =$ $[a_2, b_2] \supset \ldots \supset I_k = [a_k, b_k] \supset \ldots$ Os extremos a_k dos intervalos compõem uma sequência monótona não decrescente limitada superiormente por b; portanto convergente. Os extremos b_k dos intervalos compõem uma sequência monótona não crescente limitada inferiormente por a, portanto convergente.

Para ver o teorema dos intervalos encaixados clique AQUI.

Afirmamos que ambas convergem para o mesmo limite l. De fato, como $b_k - a_k = \frac{b-a}{2^k}$ temos que

$$0 = \lim_{k \to \infty} (b_k - a_k) = \lim_{k \to \infty} b_k - \lim_{k \to \infty} a_k.$$

Segue que $\lim_{k\to\infty} b_k = \lim_{k\to\infty} a_k = l$.

Agora mostraremos que l é raiz de f(x). Como em cada passo tem-se $f(a_k)f(b_k) < 0$, então

$$0 \ge \lim_{k \to \infty} f(a_k) f(b_k) = \lim_{k \to \infty} f(a_k) \lim_{k \to \infty} f(a_k) = [f(l)]^2 \ge 0.$$

Segue que f(l) = 0.

Acabamos por demonstrar o seguinte teorema.

Teorema 2.2 Seja $f:[a,b] \to \mathbb{R}$ contínua tal que f(a)f(b) < 0. O método da bissecção gera uma sequência (m_k) que converge para a raiz c de f e satisfaz

$$|m_k - c| \le |b_k - a_k| \le \frac{b - a}{2^k}, k \ge 1.$$
 (2.1)

2.3 Estimativa para o número de iterações

É importante observar que se estamos procurando por uma aproximação para a raiz da equação com erro máximo ε , o fator $\frac{b-a}{2^k} < \varepsilon$ pode ser utilizado como critério de parada. O ponto médio m_k de $[a_k,b_k]$ é um candidato a solução e satisfaz $|b_k-m_k| \leq |b_k-a_k| \leq \frac{b-a}{2^k} < \varepsilon$ e $|a_k-m_k| \leq |b_k-a_k| \leq \frac{b-a}{2^k} < \varepsilon$.

Então, qual é o número de subintervalos em que devemos subdivir o intervalo [a,b] de modo que o erro cometido na aproximação da solução seja menor do que ε ? Uma aproximação para a solução é um ponto em $[a_k,b_k]$, assim devemos ter

$$k > \frac{\ln(\frac{b-a}{\varepsilon})}{\ln 2}.\tag{2.2}$$

Vejamos um exemplo.

• Exemplo 2.3

Usando a expressão equação (2.1) podemos determinar quantas iterações do método da bissecção devemos realizar para obter uma aproximação da solução de $\left(\frac{x}{2}\right)^2 - \sin(x) = 0$ no intervalo [1.5, 2], com erro menor do que 10^{-3} .

De fato, como

$$k > \frac{\ln(\frac{b-a}{\varepsilon})}{\ln 2} = \frac{\ln(\frac{2-1.5}{10^{-3}})}{\ln 2} \approx 8.96.$$

Segue que devemos realizar pelo menos 9 iterações do método da bissecção.

Referências

- [1] DE FIGUEIREDO, D. G., **Análise I**. Rio de Janeiro: L.T.C., 1995.
 - [1] S. D. CONTE. Elementary Numerical Analysis. MacGraw-Hill, 1965.
 - [2] K. ATKINSON. An Introduction to Numerical Analysis. John Willey& Sons, New York, 1983.