O Método do Ponto Fixo

Prof. Doherty Andrade

Resumo: Nestas notas vamos apresentar os fundamentos teóricos do método do ponto fixo.

Sumário

1	Intro	odução	1
2	Mét	odos iterativos estacionarios	2
3	O m	étodo do ponto fixo	2
	3.1	O algoritmo	5
	3.2	Interpretação Gráfica	5
	3.3	Método Prático	6

1 Introdução

Estamos ainda interessados em resolver equações não lineares f(x)=0, mas agora sob outro enfoque. Dizemos que c é um ponto fixo para f se f(c)=c. Podemos sempre transformar o problema f(x)=0 em um problema de determinar um ponto fixo. De fato, se f(x)=0, então x+f(x)=x e assim, tomando $\phi(x)=x+f(x)$, ficamos com o problema de ponto fixo $\phi(x)=x$. Por outro lado, se temos $\phi(x)=x$, então $\phi(x)-x=0$. Logo, tomando $f(x)=\phi(x)-x$ ficamos com o problema f(x)=0. Portanto, os problema determinar raiz e determinar ponto fixo são equivalentes.

Iterar é uma palavra de origem grega que significa repetir. Os métodos iterativos são métodos baseados na repetição de um procedimento.

2

2 Métodos iterativos estacionarios

Um método iterativo estacionário de passo $s \ge 1$ é um método que gera uma sequência (x_n) dada por

$$x_{n+1} = \phi(x_{n-s+1}, x_{n-s+2}, \dots, x_n).$$

Note que métodos iterativos de passo s necessitam de s informações anteriores. Um método estacionário de passo 1 é da forma

$$x_{n+1} = \phi(x_n), n \ge 0.$$

Se ϕ muda a cada iteração, isto é,

$$x_{n+1} = \phi_{n+1}(x_{n-s+1}, x_{n-s+2}, \dots, x_n)$$

o método é dito não estacionário.

Os métodos iterativos geram uma sequência infinita (x_k) que converge para a solução, assim há a necessidade de critérios de parada. Isto é, quando devemos interromper os cálculos. Dada um tolerância $\varepsilon > 0$, os seguintes critérios são comumente utilizados como critérios de parada:

- 1. $|f(x_k)| < \varepsilon$;
- $2. |x_{k+1} x_k| < \varepsilon;$
- 3. $\frac{|x_{k+1} x_k|}{|x_{k+1}|} < \varepsilon;$
- 4. o método pára após N iterações.

3 O método do ponto fixo

O método das aproximações sucessivas ou o método do ponto fixo gera uma sequência (x_n) utilizando a seguinte lei

$$x_{n+1} = \phi(x_n), n \ge 0, (3.1)$$

onde a aproximação inicial x_0 é deve ser fornecida para iniciar o procedimento.

Duas perguntas surgem no estudo dos métodos iterativos estacionários de passo 1, com é o método do ponto fixo:

- (a) Quando a sequência (x_n) converge?
- (b) Se converge, com que velocidade?

O seguinte resultado responde à primeira pergunta.

Teorema 3.1 Seja ϕ : $[a,b] \rightarrow [a,b]$ contínua com ϕ' contínua em (a,b). Suponha que $|\phi'(x)| \leq M < 1$ para algum $M \geq 0$ e todo $x \in (a,b)$. Então, para $x_0 \in [a,b]$ tem-se:

- (a) $x_{n+1} = \phi(x_n)$ pertence ao intervalo $[a, b], \forall n \geq 0$.
- (b) $\lim_{n\to\infty} x_n = c$, para algum $c \in [a,b]$.
- (c) $c \in a$ única solução de $x = \phi(x)$ em [a, b].

Demonstração: O item (a) é óbvio. Para o item (b) notemos que se $x, y \in (a, b)$ então, pelo teorema do valor médio existe ξ entre x e y tal que

$$\frac{\phi(y) - \phi(x)}{y - x} = \phi'(\xi).$$

Donde segue que

$$|\phi(y) - \phi(x)| = |\phi'(\xi)||y - x| \le M|y - x|,$$

e ϕ é uma contração.

Agora mostraremos que x_n é uma sequência de Cauchy e portanto convergente.

Primeiramente, notemos que

$$|x_{n+1}-x_n| = |\phi(x_n)-\phi(x_{n-1})| \le M|x_n-x_{n-1}| \le M^2|x_{n-1}-x_{n-2}| \le \dots \le M^n|x_1-x_0|.$$

No caso geral, temos

$$|x_{n+k} - x_n| = |x_{n+k} - x_{n+k-1} + x_{n+k-1} - x_{n+k-2} + x_{n+k-2} - \dots - x_n|$$

$$\leq |x_{n+k} - x_{n+k-1}| + |x_{n+k-1} - x_{n+k-2}| + \dots + |x_{n+1} - x_n|$$

$$\leq M^{n+k-1}|x_1 - x_0| + M^{n+k-2}|x_1 - x_0| + \dots + M^n|x_1 - x_0|$$

$$\leq \frac{M^n}{1 - M}|x_1 - x_0|.$$

Como M < 1 segue que $M^n \to 0$ e portanto $|x_{n+k} - x_n| \to 0$ quando $n \to \infty$. Assim, a sequência é de Cauchy em \mathbb{R} , sendo convergente para algum $c \in [a, b]$.

Agora vamos provar que $c = \lim x_n$ é solução de $x = \phi(x)$. De fato,

$$c = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \phi(x_n) = \phi(\lim_{n \to \infty} x_n) = \phi(c).$$

Assim, c é solução do problema de ponto fixo $x = \phi(x)$.

Provar que c é a única solução é fácil, pois se c e c_1 são soluções, então

$$|c - c_1| = |\phi(c) - \phi(c_1)| \le M|c - c_1|,$$

como M < 1, seque que $c = c_1$.

Para responder à segunda pergunta vamos precisar da seguinte definição.

Definição 3.2 Dado uma sequência (x_n) convergente para α seja $E_n = x_n - \alpha$. Se existe um real $p \ge 1$ e $c \ne 0$ tais que

$$\lim_{n\to\infty}\frac{|E_{n+1}|}{|E_n|^p}=c,$$

dizemos que a ordem de convergência da sequência é p. Se p=1 dizemos que a ordem de convergência é linear, se p=2 dizemos que a ordem de convergência da sequência é quadrática.

Dizemos que um método iterativo é de ordem p para a raiz α , se ele gera uma sequência que converge para α com ordem de convergência p.

Teorema 3.3 Sob as hipóteses do Teorema 3.1, a ordem de convergência de $x_{n+1} = \phi(x_n), n \ge 0$, gerada pelo método do ponto fixo, é p = 1.

Demonstração: De fato, pelo teorema do valor médio, existe ξ_n entre x_{n-1} e c tais que

$$x_n - c = \phi(x_{n-1}) - \phi(c) = \phi'(\xi_n)(x_{n-1} - c).$$

Assim,

$$\frac{|x_n - c|}{|x_{n-1} - c|} = |\phi'(\xi_n)|.$$

Fazendo $n \to \infty$, obtemos

$$\lim_{n \to \infty} \frac{|x_n - c|}{|x_{n-1} - c|} = |\phi'(c)|.$$

Isto responde à segunda pergunta.

Note que $\phi(x) = x$ tem solução quando os gráficos de $y = \phi(x)$ e y = x se cruzam.

• Exemplo 3.4

A equação $x^3-x-5=0$ pode ser reescrita como $x=x^3-5=0$ ou $x=(x+5)^{\frac{1}{3}}$ ou ainda $x=\frac{5}{x^2-1}$. A forma da equação a ser escolhida depende da raiz a ser localizada e se a função satisfaz às condições do Teorema 3.1.

• Exemplo 3.5

A equação $\ln x - x + 2 = 0$ pode ser reescrita como $x = \underbrace{\ln x + 2}_{=\phi(x)}$ ou $x = \underbrace{\exp(x-2)}_{=\phi_1(x)}$. A equação $\ln x - x + 2 = 0$ possui solução nos intervalos (0,1) e (3,4). Observe que $|\phi'(x)| = |\frac{1}{x}| < 1$ em (3,4) e $|\phi'_1(x)| = \phi_1(x) < 1$ em (0,1).

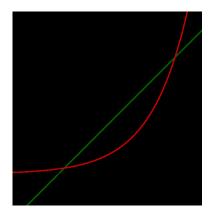


Figura 1: Gráfico de $y = \phi(x)$ e y = x

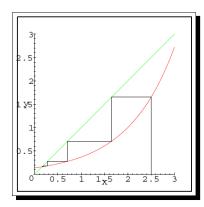
3.1 O algoritmo

Dado f(x) = 0 escreva como $\phi(x) = x$. Seja x_0 aproximação inicial, $\varepsilon > 0$ tolerância. Faça:

- 1. Se $|f(x_0)| < \varepsilon$ faça $c = x_0$ e pare.
- 2. k = 1.
- 3. $x_1 = \phi(x_0)$.
- 4. Se $|f(x_1)| < \varepsilon$ ou $|x_1 x_0| < \varepsilon$ faça $c = x_1$ e pare.
- 5. $x_0 = x_1$
- 6. k = k + 1 e volte ao passo 3.

3.2 Interpretação Gráfica

Ilustramos a seguir a convergência da sequência no método do ponto fixo: a partir da aproximação inicial x_0 obtem-se x_1 subindo até a função ϕ e depois paralelamente ao eixo OX até encontrar a bissetriz e descendo até o eixo OX. A partir de x_1 repete-se o procedimento. Veja os gráficos para o exemplo $x = \exp(x-2)$ com aproximação inicial $x_0 = 2.5$ e $\frac{\ln(x)+3}{2} = x$ com $x_0 = 1$.



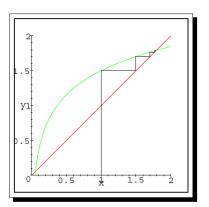


Figura 2: Convergência no método do ponto fixo

3.3 Método Prático

Uma maneira prática de utilizar o método das aproximações sucessivas é dispor os cálculos em uma tabela como mostrado a seguir 1. Nesse exemplo, $f(x) = 2 + \ln(x) = 0$ e $\phi(x) = \exp(x-2) = x$ no intervalo [0.2, 1.5], veja gráfico em 3. Note que $|\phi'(x)| < 1$ no intervalo.

k	x_k	$\phi(x_k)$	$ x_{k+1} - x_k $
0	1.0	.367879	_
1	.367879	.195515	.632121
2	.195515	.164558	.172364
3	.164558	.159543	.030957
4	.159543	.158744	.005015
5	.158744	.158617	.000799
6	.158617	.158598	.000127
7	.158598	.158595	.000019
8	.158595	.158594	$.3 \times 10^{-5}$
9	.158594	.158594	$.1 \times 10^{-5}$
10	.158594	.158594	0

Tabela 1: Tabela para ponto fixo

Referências

[1] DE FIGUEIREDO, D. G., Análise I. Rio de Janeiro: L.T.C., 1995.

- [1] S. D. CONTE. Elementary Numerical Analysis. MacGraw-Hill, 1965.
- [2] K. ATKINSON. An Introduction to Numerical Analysis. John Willey & Sons, New York, 1983.