

LISTA 6

Data da lista	01, 03, 08 e 10 de outubro de 2025		
Preceptor(a)	Matheus Yukio Kassada Ito		
Curso(s) atendido(s)	Estatística		
Orientador(a)	Brian Alvarez Ribeiro de Melo		

1) Dois processos (Manual - x, Semi-Manual - y) com $n_1 = 6$ e $n_2 = 6$ ordens de serviço. Construir um i.c. com $\gamma = 90\%$ de confiança para a razão entre as duas variâncias dos processos de lapidação (σ_x^2/σ_y^2) .

$x_i \text{ (man)}$	y_i (semi)	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	
2	2	1	1	
4	2	1	1	
1	2	4	1	
2	2	1	1	
5	6	4	9	
4	4	1	1	
18	18	12	14	

2) Tempos de atendimento $(X_1 \sim \text{Exp}(\lambda_1) \text{ e } X_2 \sim \text{Exp}(\lambda_2))$ para dois caixas. Calcular um intervalo de confiança de 90% para a razão entre os tempos médios de atendimento dos caixas, $E(X_1)/E(X_2)$.

Caixa 1	1.9	5.8	0.8	1.2	0.7	3.0
Caixa 2	2.2	1.3	4.8	0.4	0.9	2.0

- 3) Nova vacina (X): $n_X = 300$ vacinados, $k_X = 30$ contraíram. Grupo de controle (Y): $n_Y = 250$ não vacinados, $k_Y = 17$ contraíram. Construir um i.c. de 93% para a diferença $p_X p_Y$.
- 4) Seja $X_1, X_2, ..., X_n$ uma amostra aleatória da distribuição de Bernoulli com parâmetro θ . A função de densidade conjunta é $p(x|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}, \ \theta > 0$. (a) Obter um $IC_{\theta}(1-\alpha)$. (b) Calcular um IC supondo $g(\theta) = \theta(1-\theta)$.