

LISTA 3

Data da lista	10 e 12 de setembro de 2025
Preceptor(a)	Matheus Yukio Kassada Ito
Curso(s) atendido(s)	Estatística
Orientador(a)	Brian Alvarez Ribeiro de Melo

- 1) Seja X uma v.a. com densidade $f(x) = \theta x^{\theta-1}$, 0 < x < 1. Achar uma quantidade pivotal e usá-la para construir um i.c. para θ .
- 2) Seja $X_1, X_2, ..., X_n$ uma a.a. de uma distribuição normal $N(\mu, \sigma^2)$, μ desconhecido e σ^2 conhecido. Mostrar que $(\overline{X} a\sigma/\sqrt{n}; \overline{X} + a\sigma/\sqrt{n})$ onde $Pr\{-a < Z < a\} = 1 \alpha, Z \sim N(0, 1)$ é um intervalo de confiança $100(1 \alpha)\%$ para μ . Concluir que para termos um i.c. $100(1 \alpha)\%$ para μ com comprimento L, é necessário tomar $n = 4a^2\sigma^2/L^2$ observações.
- 3) Os dados a seguir correspondem ao diâmetro, em mm, de n=30 esferas de rolamento... (a) Construa um i.c. de 95% para a média da população... (b) Suponha que, para satisfazer as especificações, as peças devem estar compreendidas entre 140 e 160 mm. Determine um i.c. de 98% para a verdadeira proporção de peças satisfazendo as especificações.

Dados brutos (n = 30): 137, 154, 159, 155, 167, 159, 158, 159, 152, 169, 154, 158, 140, 149, 145, 157, 160, 155, 155, 143, 157, 139, 159, 139, 129, 162, 151, 150, 134, 151.