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Background

Increasing greenhouse gas emissions and diminishing supplies of

fossil-derived fuels underline the need for environmentally

sustainable energy resources. Lignocellulose, more generically

named simply as plant biomass, represents one of the most

abundant renewable resources for biofuels. Lignocellulosic

biomass from forest residues, agro-wastes and energy grasses is

extensively exploited for bioenergy production. This renewable

biomass source is abundant, highly accessible, relatively cheap

and diversifies the energy matrix (Marriott et al., 2016). Grass

lignocellulosic material consists mostly of secondary cell walls and

is composed mainly of cellulose (25%–55%), hemicellulose xylan

(20%–50%), lignin (10%–35%) and small amount of pectin,

depending on plant species, organ, cell types and developmental

stage of the tissue. Although pectin is a minor cell wall

component, there is increasing evidence suggesting that pectic

polysaccharides are involved in cell wall recalcitrance (Biswal

et al., 2018).

The most important crops farmed at large scale are grasses,

where xylan is the main hemicellulose component in their cell

walls. Xylan is tightly associated with cellulose microfibrils,

connecting them through hydrogen bonds. Recently, it was

demonstrated that xylan interacts with cellulose by twofold

helical screw conformation and the interaction is influenced by

xylan substitution patterns (Simmons et al., 2016). The xylan

backbone consists of a linear chain of b-(1,4)-D-xylosyl residues
(Xylp) and makes up between 20% and 35% of the total cell

wall. Arabinofuranose residues (Araf) may be a-(1,2) or a-(1,3)
linked to the xylan backbone forming arabinoxylan (AX), which

may be further substituted with ferulic (FA) or p-coumaric acid

residues (Figure 1). The side-chain decorations on the AX

backbone vary between plant species and tissues. In grasses,

the primary and secondary cell walls contain substantial

amounts of AX, which is also found at much lower abundance

in primary cell walls of dicots. For more background informa-

tion of xylan biosynthesis and modifications, see the review by

Smith et al. (2017).

Ferulic esters in AX might undergo oxidative dimerization to

form cross links at adjacent AX chains or lignin, thereby

generating intramolecular and intermolecular cross links of AXs

with lignin and structural proteins that contribute to the

recalcitrance of grass biomass for saccharification. FA may act

as a nucleating site for the formation of lignin, hence linking AXs

to lignin by forming a lignin–AX complex (Oliveira et al., 2015).

Recent studies of the lignin–polysaccharide interactions in

secondary cell walls demonstrated that the hydroxyl groups in

xylan have abundant electrostatic interactions with lignin

methoxyl groups found mainly in S-lignin (Kang et al., 2019).

Arabinoxylan also influences the enzymatic hydrolysis of

cellulose, and it requires enzymes different from those used to

hydrolyse cellulose. Lowering AX content and/or its decorations

(with araf and FA) reduces the cross-linkages among AX, lignin

and cellulose in plant cell walls, decreasing biomass recalcitrance

(Smith et al., 2017). Research aiming at elucidating the genes

required for xylan biosynthesis, the way they are controlled and

how changes in these genes influence plant development has

been boosted by the potential of plant biomass as a source of

renewable energy. Recent studies have highlighted the key role

that xylan plays in the conversion of lignocellulosic feedstocks to

fuels and other value-added products.

Tailoring xylan structure

The glycosyltransferases (GTs) required for xylan biosynthesis

were first identified in Arabidopsis thaliana. These enzymes

catalyse the biosynthesis of the xylan backbone, transferring

nucleotide sugars to the growing AX chain within the Golgi

apparatus. Two members of the glycosyltransferase family 43

(GT43), IRREGULAR XYLEM9 (IRX9) and IRX14 proteins, and

one member of GT47, IRX10, are implicated in the biosynthesis

of the xylan backbone, but the specific role is not completely

established (Brown et al., 2007; Smith et al., 2017). Subsequent

works confirmed that IRX10 is the b-1,4-xylan xylosyl trans-

ferase responsible for xylan polymer extension, transferring

xylosyl residues from UDP-xylose to xylooligosaccharides at the

reducing end, whereas IRX9 and IRX14 are accessory proteins

involved in the elongation of the xylan backbone and are

structural components of the functioning xylan synthase com-

plex (XSC). Additionally, glucuronosyltransferases (GUX) from

the GT8 family and arabinosyltransferases (XAT) from the GT61

family are responsible for the addition of glucuronosyl and
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arabinosyl on the xylan backbone, respectively (Smith et al.,

2017).

Despite the importance of AX for biofuels, the biochemical

function and structure of GT43 enzymes are still unclear. GTs are

difficult to study because they are labile, present in multimeric

complexes and encoded by large gene families whose members

can have overlapping functions. Almost all the studies with the

GT43 family are limited to comprehensive genetic analysis of the

functional roles of GT43, mutations in the genes IRX9 and IRX14

result in decreased xylan synthase activity and xylose content,

accompanied by a shorter xylan backbone (Brown et al., 2007).

Recent advances provided important evidence that BdGT43A,

the orthologue of IRX14 in Arabidopsis, is involved in xylan

backbone biosynthesis in Brachypodium distachyon (Whitehead

et al., 2018). Using commercial cellulases, B. distachyon recom-

binant inbred lines (RILs) were screened, associating them with a

single quantitative trait locus (QTL) for saccharification. The study

revealed that RNAi suppression of BdGT43A in Brachypodium

decreases xylose and arabinose content and increases stem

saccharification relative to the wild type, which is clear genetic

evidence that BdGT43A is involved in xylan biosynthesis. In

addition, the transgenic lines showed a decrease in FA and an

increase in p-coumaric acid, compared to the wild type. Similarly,

plants of hybrid aspen (Populus tremula 9 tremuloides) down-

regulated simultaneously for PtGT43B and PtGT43C, the ortho-

logues of IRX9 and IRX14, respectively, present reduced xylose

content relative to the reducing end sequence in xylan, with slight

alteration in the chemical composition of wood, a small decrease

in S and H lignin, accompanied by a higher lignocellulose

saccharification efficiency (Ratke et al., 2018).

It is interesting to note that the underlying mechanisms for the

reduced recalcitrance in Brachypodium and hybrid aspen trans-

genic lines are quite different. In BdGT43A silenced lines, the

lower xylan content associated with decreased FA content is the

main factor responsible for the increased saccharification effi-

ciency. Alternatively, the reduction in the xylan in hybrid aspen

GT43 suppressed lines is associated with a small decrease in S

and H lignin content, being this the main contribution to the

higher saccharification efficiency. Different responses to the

suppression of orthologues genes are due in part to the largely

unpredictable pleiotropic effects and phenotypes associated with

the mutations. Additionally, the mechanistic relationship

between GT43 gene repression and cell wall modifications

requires more investigation.

Further examination of AX feruloylation (de Souza et al.,

2018) identified a member of the BAHD acyltransferase family

involved in the transference of FA residues to the AX backbone.

Silencing the SvBAHD01 gene by RNAi in Setaria viridis reduced

FA content by 60% and increased stem saccharification

efficiency (from 40 to 60%), without changing biomass

productivity. Therefore, the increase in stem saccharification

obtained by Whitehead et al. (2018) reflects a synergic effect of

the overall decrease in feruloylation of arabinosyl moieties linked

to AXs. The elucidation of the genes involved in xylan biosyn-

thesis and feruloylation, the way they are controlled and how

changes in these genes influence plant growth can facilitate the

design of strategies aimed at engineering plants to exhibit

modified xylan for improved biofuel production. These recent

insights emphasize the importance of generating plants with

reduced FA and AX content in the search for improved

feedstocks for biorefineries.

Future perspectives

Arabinoxylans are abundant in nature and in the grass cell wall.

AX and FA are essential components, cross-linking polysaccha-

rides to lignin and increasing the cell wall resistance to

hydrolysis. Although further elucidation of xylan biosynthesis

mechanisms is still necessary, a possible model to explain how

it is associated with biomass digestibility is emerging. The

advantage of discovering the genes associated with the

expression of the enzymes in the biosynthesis of xylan is that

Figure 1 Generalized structure of xylan branched with arabinose, ferulic acid and glucuronic acid.
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there are now more ways to design this structure. Genetic

manipulation of xylan biosynthesis and feruloylation raises

many interesting questions that should be addressed in the

future and is a potential approach to engineering crops that

match the industrial requirements for food, cellulosic ethanol

and biorefineries.
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